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An efficient and accurate 3D algorithm for dynamical simulations of many de-
formable drops with strong hydrodynamical interactions at zero Reynolds numbers
is developed. The drop-to-medium viscosity ratipand the Bond number are ar-
bitrary, and the drops are subject to gravity with stationary triply periodic boundary
conditions. The algorithm, at each step, is a hybrid of boundary-integral and eco-
nomical multipole techniques, with extensive use of rotational transformations and
economical truncation of multipole expansions to optimize near-field interactions. A
significant part of the code is the new, “best paraboloid-spline” technique for calcu-
lating the normal vectors and curvatures on drop surfaces, which greatly improves the
quality of long-time simulations. Examples show the phenomenon of clustering in
a concentrated sedimenting emulsionXes 0.25 and 1, which leads to an increase
in the average sedimentation velocity with time. A high efficiency of the method
is demonstrated, with two orders-of-magnitude gains over the star@@dN?)
boundary-integral technique fdt ~ 107 drops in a periodic cell withN,, ~ 10° tri-
angular boundary elements per drop, so that typical long-time dynamical simulations
can be performed in a few days or weeks on a standard workstation (as compared to
the several years which would be required for the same simulations using standard
boundary-integral techniques). The effects of drop triangulation and truncation of
multipole expansions on dynamical simulations are assess@dooo Academic Press

Key Words:deformable drops; hydrodynamical interactions; boundary integrals;
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1. INTRODUCTION

The motion of deformable drops at small Reynolds number is relevant to blood rheolc
and many processes in chemical engineering and biotechnology. So far, computati
progress has been primarily restricted to simulations of one or two drops by boundz
integral methods [1] (see [2, 3], for example, for an extended list of recent studies). Limi
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3D simulations exist for more (10-12) drops falling under gravity [4] or subject to shear wi
periodic boundaries [5]; the methods used in these studies are direct, with the computati
requirements scaling @(N2N2) per time step (wherdl is the number of drops and,
is the number of boundary elements per drop), thus not allowing calculations to procee
N > O(10%) with adequate resolution¥, > O(10°), especially for an arbitrary drop-to-
medium viscosity ratioi. In 2D, larger systemda\ = 25—-49) have been considered [6, 7],
still by anO(N?N?) method, and the simplest use of Taylor expansions to optimize remc
interactions was tested [6], although with only a modest gain. Greater progress has t
made in simulating large hydrodynamical systems of solid spheres. Ladd [8] was able
dynamically simulate up to 32000 spheres in sedimentation by a lattice-Boltzmann met|
[9, 10]. However, it would be a non-trivial task to adapt this approach to boundary conditic
other than no slip, and we are not aware if this method has been applied to drops, witl
without deformations. Sangani and Mo [11] developed the first hydrodynamical version
the traditional fast multipole method (FMM) [12] with periodic boundaries for spherice
particles and applied it to study sedimentation, effective viscosity, and permeability
random static configurations. By taking a few multipoles per particle (and adding lubricati
analytically [13], when necessary), they circumvented the difficulty with the tradition:
FMM becoming inefficient for high-order multipoles and could consider large systerr
up to N =8000; potentially, their code should be applicable to spherical drops as we
Unfortunately, this potential is not realizable for drops with deformation; each of them
necessarily an object with a large number of parameters (collocation nodes on the surfz
thus limiting dynamical simulations to much smaliér

In the present paper, an efficient and accurate 3D algorithm for dynamical simulation:
many deformable drops with strong hydrodynamical interactions at zero Reynolds num
is constructed. For simplicity, a stationary, cubic periodic cell is assumed, and the drops
subject to gravity, which includes applications to emulsion sedimentation; a generalizat
for rheology simulations will be possible in future work. The algorithm, at each time ste
is a hybrid of the boundary-integral and economical multipole techniques; in the multipc
part, however, our code does not follow the line of FMM, but rather develops the approz
initiated in conductivity simulations by Zinchenko for 2D [14, 15]and 3D [16, 17] problems
Derivation of the boundary-integral equation for sedimenting systems requires some cau
(because an additive constant in the velocity affects calculation of the sedimentation re
and we devote some space to it in Section 2. In Subsection 3.1, a general scheme
fast summation of interactions between collocation nodes on drop surfaces is descri
Drops are sliced gridlessly into compact blocks. The near-field interactions between blo
when possible, are calculated by multipole reexpansions from Lamb’s singular to regt
forms, using a rotation-based scheme to reduce the cost of this operatio®ffan to
O(n®), wheren is the order of multipoles retained for the pair (Subsection 3.3). Althoug
rotational transformations of spherical harmonics by Wigner functions have long be
known in quantum mechanics [18], it was not until more recent work [16] that their relevan
to fast summation of interactions was recognized and exploited (surprisingly, the Fiv
papers prior to 1996 have all used the less efficient, di@et*) scheme for their cell-
to-cell reexpansions). Lamb’s singular moments for individual blocks are also calcula
by rotations, which gives a fixed, but almost several-fold, gain compared to direct mom
evaluation (Subsection 3.2). “Far-field” interactions, associated with periodic images,
treated by Taylor expansions of arbitrary order and Ewald-like forms for Green'’s functio
(Subsection 3.4). Another feature borrowed from [16] is the “economical truncation”
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multipole expansions, i.e., a broad spectrum of truncation bounds strongly dependen
mutual geometry of the blocks for optimized performance; unlike in [16], however, we ha
to construct these bounds in a more empirical manner for a given precision (Subsection
Although loaded with multipole details, necessarily cumbersome in hydrodynamics, «
scheme for summing interactions seeks to minimize the use of costly direct summatior
alogically simple way. Fast summation is only a part of the problem, and Section 4 descri
a new, “best paraboloid-spline” (BPS) method for calculating the curvatures and norm
which greatly improves the quality of long-time dynamical simulations. Subsection &
outlines the passive mesh stabilization technique [3] used to maintain the quality of
unstructured drop triangulations with fixed topology.

Examples of long-time dynamical simulations in Section 6 demonstrate the phenome
of clustering in a concentrated sedimenting emulsion of many deformable dropsta25
and 1, and also show a high efficiency of the code, with two orders-of-magnitude ga
over theO(N?N?) method at sufficient accuracy fof = O(10?) andN, = O(10%). The
effects of multipole truncation and triangulation on long-time simulations are also analyz
Section 7 discusses the prospects and limitations of the proposed approach.

Some other recent methods for fast summation of interactions include particle-partit
particle-mesh (M) (see [19-23] and references therein), FFT-accelerated FMM [24
rotation-accelerated FMM [25], and finally, the new 3D FMM [26]. These methods a
general purpose for an arbitrary distribution of charges, while our approach substanti
uses natural grouping of collocation nodes into interfacial surfaces (which still include
large number of applications, with deformable drops, arbitrary-shaped suspended parti
granular materials, etc.). However, these previous developments and implementation
our knowledge, are for Coulombic interactions only, thus not allowing for comparisons w
the present approach in the solution of the same hydrodynamic (or similar) problems. E
with rotations incorporated in the latest FMM versions [25, 26], the approach initiated
[16] and further developed herein is deeply different from FMM, in treating both close a
remote interactions. Very high gains achieved by our code oveDtiN*N2) method for
practicalN andN,, combined with a simple logic (compared tt\MPand FMM), can make
our approach attractive for disperse media simulations.NFer10°®, alternatives should
be considered. However, regardless of the method, it may not be possible to dynamic
simulate such large concentrated systems of deformable 3D drops with adequate resol
N, ~ 10° on present-day workstations. All timings below are for a DEC 500au, a sing
processor 500 MHz UNIX workstation with FORTRAN 77 optimizing compiler.

2. BOUNDARY-INTEGRAL FORMULATION

Consider an infinite set of deformable drops of the same depgitand viscosityuin
slowly settling under gravity in a medium of densjyy; and viscosityuex. An equivalent
radius of non-deformed dropsag (assumed, for simplicity, to be the same for all drops)
and the Bond number 8 = (pint — pext)gag/a, whereo is the constant surface tension.
The drop system is obtained from the basic configuratiod dfops with surface centroids
X§... x5 in the cellV by triply periodic continuation into the whole space. No externa
flow is imposed, and so the basic celidoes not change with time and can be taken as th
unit cube [Q 1) x [0, 1) x [0, 1), if the cell sideL is chosen as the characteristic length for
nondimensionalization; the;-axis is antiparallel to the gravity acceleration veaof he
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fluid velocity v(x) is triply periodic, while the pressure has a linear part plus a periodic pa
A system of boundary-integral equations f@x) on drop surface$, ... Sy is facilitated
through the use of the periodic nondimensional Green func@dfi&), k=1, 2, 3[27-29]
and corresponding stress tensef (x) (these functions are discussed more in detail ir
Subsection 3.4). With the normalization used in the present work, the v&{d¢s) and
the corresponding pressumg¥ (x) satisfy

VZG(k) (X) _ Vq(k)(x) =V T(k) (X) = Z 8(X — m) €, (21)

where the summation is over all latice poimts= (my, my, m3) with integermy, my, ms,
ande, (k=1, 2, 3) are basis vectors. Unlike® (x), the pressurg™ (x) and stress tensor

0 = _q®) 4 (Vv +VTHGW (2.2)

are linear plus periodic functions. The additive constant&{f are chosen so that the
average oz overV is zero (which is equivalent to the requirement that the flusf
through any face of the periodic cell is zero). Besides, we choose the reference fram
that the average fluid velocity) overV is also zero.

Green’s theorem gives, for a po V lying outside the drops,

N
TRGEEDY /Sﬂ Vo) - T —y) N0 — GYx—y) - T - n] S (2.3)
=1

Here,n(x) is the outward unit normal ate S;. The velocityv and the corresponding stress
tensorT (without the hydrostatic term) have been made nondimensional by choosing
scaled?(oint — Pext) 9/ ext @aNd(pint — Pex) g L for vandT, respectively; the indicesxtand

int mark the values related to the continuous and drop phases, respectively. To rigoro
derive (2.3), Green’s theorem is applied to the volubne of the cell V lying outside
the drops (shaded in Fig. 1). Periodic parts of the integrand (2.3) do not contribute to
integrals over the cell boundaries. Linear parts make nonzero contributions (if some dr
intersectV). However, by the relations

/ (v.n)de=/vdV=0, (2.4a)
aVexl"‘avint \

/ [G(k)(x_y) . n(X)]XdS( — / G(k)(x_y)dvx =0 (24b)
aVexH'aVim v

(WheredVex and dVin; are parts of the bounda@V lying outside and inside the drops,
respectively), the integrals of the linear terms o8¥g, can be combined with those over
drop surface portions lying insidé to produce full surface integrals, which rigorously
gives (2.3).

Similar to (2.3),

N
0= Z/ [)»V(X) . 7.(k) (X — y) _ G(k)(x o y) . Tim(X)] - n(x) dS( (2'5)
p=1"%
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FIG. 1. The derivation of the boundary-integral equation for a system of sedimenting deformable drops
2D sketch, not to scale). The boundary®f is marked bold. For drof; and its periodic image, the integrals
of (v-n)x and (G - n)x over the surface portior@, Sﬁ and the cell boundary portionE/ﬂ, ZB combine to
boundary integrals ofv- n)x and(G® - n)x over the entires;.

for anyy e V lying outside the drops, whebe= uint/ tLext IS the drop-to-medium viscosity
ratio. Using the boundary conditions and taking the lignit- S, now gives a system of
nondimensional boundary-integral equationswior) in a standard way:

N
() =2 ) /Sﬂ V) - T (X —y) - neO d S+ F(y). (2.6)
B=1

Here,x = (A —1)/(A + 1), the inhomogeneous term is

2 N
Fly) = / F0GX —y) - n(X) . (2.72)
i s
with
f ()]s, = a’(ky + k2)/B + (X — X5, (2.7b)

G=(GY, G?, GY) is the symmetric Green tensar=a,/L is the nondimensional non-
deformed radiusk; (X) andky(x) are the dimensionless principal surface curvatures, ar
x5 is the surface centroid

1
x§=— [ xdS (2.8)
B Sﬂ/sﬁ
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It is inconvenient that the kernel® (x —y), as follows from the derivation of (2.6), is
not triply periodic, but contains a linearly growing part from the pressife The kernel
+® in (2.6) could be changed to the periodic kernel

FOX—y) =70 —y) — x =yl (2.9)
by simply adding a suitable vector constant/{r), using the identities

(1-2Vp)e&, yeS)

. (2.10)
—2Vge, y outsideS] ,

2/ FOx—y) - nxdS = {
S

whereV; is the volume of dropg, and Sg stands for all periodic images &. As for
the standard, free-space case [1], the eigenvalues of the integral operator with the ke
27® can be shown to lie within§1, 1]; however, the eigenfunctions are different (see
(2.10)). To avoid complications with Wielandt's deflation of the extreme eigenvatdes
(necessary to speed up the convergence of the iterative solution), one can still consider
in the subspace of(x) with zero fluxes through everg,. In this subspace, the RHS of
(2.6) is a periodic operator, the eigenfunctions&et 1 are standard arbitrary rigid-body
motions, and-1 is no longer an eigenvalue for the adjoint. After the standard Wielant
deflation [1, 48] in this space;™ (x — y) can be replaced by the more convenietfit(x — y)
using (2.9). Besides the deflation, it is important to reduce the change of the integrand:
drop surfaces, like we did in (2.7b), in order to accelerate convergence in the multip
part (Section 3) of the algorithm; for the velocities, this goal is achieved by consideril
fluctuations from the average values. Thus, we proceed from (2.6) to an equivalent, defl
system of equations for

w(y) = v(y) — «U(y), (2.11)
where the hat stands for the rigid-body projection (see below),

W(y)=U(y)—M u-nd§ yes§, (2.123)
& Js

N
ucy) =« lZZ/Sﬁ QX) - T(X =) - N(X) d S — W(Y) + (W)q
p=1

N N
—ZZ(W)ﬂV5+ZZ/(W.n)(x—xg)ds +F(y). (2.12b)
p=1 p=1"%

Here,
1
W)p = */ wdS Q(X)[s, = W(X) — (W)g, (2.13)
S Js,

and the tensotr = {ri(jk>} is now symmetric in all three indices (see Subsection 3.4). /

convenient expression [2] for the rigid-body projectiérendw can be used, for example,

W(y)ls, = W +B x (y—x), (2.14)
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where the vectoB = (B, B, B3) is calculated from the solution of ax33 system:
Dij Bj = Lw(x) e x (x=x5)]dS i=123, (2.15)
with the positive-definite matrix
Djj :/Sx {8”— (x—xg)z— (x—xg)i(x—xg)]}ds (2.16)
Oncew is determined from (2.12), the velocitycan be recovered:

V=w+kW/(1— k). (2.17)

In addition to (2.12), we have developed a more straightforward deflation scheme, us
directly the eigenfunctions for the kernet @ —y) with eigenvaluest1 which can be
derived from (2.10). The two schemes gave practically identical results in tests (whicl
expected, since they are equivalent in the limit of fine triangulations), but (2.12) is prefer
for its simplicity.

Equation (2.12) is solved at each time step by the simplest method of successive
stitutions, and the drop surfaces are updated by the second-order Runge—Kutta tim
tegration scheme, with an artificial tangential velocity added to prevent mesh distort
(Subsection 5.1). For extreme € 1 or A >> 1) viscosity ratios and high volume fractions,
when drops are close, successive substitutions are poorly convergent, and alternative
conjugate gradient iterations (as discussed at some length by Zincbiealk@]) would be
much preferable. This alternative requires, however, the adjoint of the discrete form of
boundary-integral operator (2.12), which is straightforward to calculate for standard poi
to-point summations, but more difficult when the combined boundary-integral-multipc
scheme (Section 3) of the present work is used. We have chosen the simplest iter:
method not to overcomplicate the code logic at this stage, leaving the most difficult c
of extreme at high volume fractions for further investigation. For the same reason, or
the conventional form (2.7) of the inhomogeneous term is used in the present work. A r
curvatureless form [3] may be a preferable option for many drops at larger deformatior

Since the emulsion, on average, is at (égt = 0), the instantaneous sedimentation rate
Vs is the average velocity over the drop phase. By the Gauss theorem, calculatiois of
reduced to surface integrals,

1N
VS=E§ L(v-n)(x—xg)ds (2.18)
a=1

wherec is the volume fraction of the drop phase.

The central part of our method is an efficient calculation of the boundary-integrals for 1
inhomogenous (2.7a) and double-layer (2.12b) terms. A standard, point-to-point bound
integral method has a@(N2M?) computational cost, whedd is the number of collocation
points per drop, thus heavily restricting dynamical simulations to shha#ven with the
fastest calculation of Green’s functions by suitable interpolations. The method descril
below is a certain hybrid of the boundary-integral and economical multipole techniqt
and follows in many ways the procedure developed for thermal/electrostatical interact
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of many spheres by Zinchenko [16], with extensive use of Wigner functions and economi
truncation of multipole expansions to optimize near-field summations.

3. FAST ALGORITHM FOR THE BOUNDARY-INTEGRAL OPERATORS

3.1. General Scheme

Let every drop surfac&, (¢ =1, ... N) be represented by an unstructured grid of flat
triangles (Fig. 2) withM verticesx; (called thereafter the collocation nodes). For any
smooth integrandy(x) on S,, a simple trapezoidal rule can be used, with reassignin
triangle contributions to vertices (a procedure due to Rallison [30], who used it in one-di
calculations),

[ emds~ 3 vxpas, (3.1)
S Xj €S,
where
AS = }ZAS (3.2)

and the summation is over all triangle areeS with vertexx;. Pozrikidis and co-workers

[49] developed an alternative approach to surface discretization in terms of quadratic bot
ary elements with six nodes. Using quadratic elements is preferable for smooth solutions
to a higher rate of convergence, although the number of operations per element is incre
several fold compared to (3.1). Flat triangle formulation, however, is expected to be m
robust in extreme cases when high-curvature zones or near contacts between neighb
drops are formed (which are typical of our simulations in Section 6). We are not aware

shells (D)

blocks (B)

FIG.2. The calcualtion of near-field interactions. Assum\g| B; andy | B, the contributions of block,
to the boundary integrals fgt y andy” are evaluated, respectively, by (i) reexpansion of Lamb’s singular serie
from x? to xp, (ii) pointwise calculation of Lamb’s singular series, and (jii) direct point-to-point summation.
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3D boundary-integral solutions with quadratic elements for such extreme cases, and
detailed comparison between the two approaches cannot be made at present.

To calculate “self-interactions,”i.e., the contributions of the surfaceyto single (2.7a)
and double-layer (2.12b) boundary integrals for collocation nggdege subtract out the
free-space contributions from the periodic Stokeslet and stresslet (cf. [16]),

G(r) = Go(r) + G1(r),  7(r) = 7o(r) + T1(1), (3.33)
1 /1 rr 3 rrr
Go(r) = “8r (r + I’3>’ To(r) = P (3.3b)

Upon substitutions 0By andr into self-integrals, singularity subtraction is made, so that

L FOOGX—y) N dS ~ Y Gilxj —y) - W(x)) (3.4a)
Xj€S,
+ > [feg) = F(IGo(x; —Y) - (X)) AS; (3.4b)
Xj €S, Xj#Y
and
2 /& QW) - F(x— y) N6 dS ~ Q(Y) (3.50)
+ ) QX)) - Tax) —Y) - W(X)) (3.5b)
Xjeq,
+ Y [QX) — Q] - Tolxj —Y) - WIX)). (3.5¢)
Xj €S Xj#Y

In (3.4)—(3.5) and in what follows, the weighté(x;) are
W(xj) = f(xj)n(xj) AS; (3.6)
for the single-layer calculations and
W(Xj) = 2n(xj) AS; (3.7

for the double-layer calculations. Terms (3.4b) and (3.5c¢) are handled by direct summat
(obviously, an economical way being to consider pairsxj) withi < j only and accumu-
late contributions to the integrals fpe= x; andy = x; simultaneously). The contributions of
Gz andr; to (3.4) and (3.5), called “far-field” contributions, are economically calculated b
Taylor double series in powers 0fj — x5)k and(y — x5);. These expansions are generatec
to an arbitrary order (Subsection 3.4). The numReof drops with centroidsS € [0, 1)®

is assumed to be not too small, so that the minimal spherical shell aBurahtered axd
has the radiug, < 1/2, and the far-field expansion is convergent. For modexatmany
terms may be required, while for largé only a few terms suffice. The algorithm contains
an additional parameter, which controls the truncation of this and other Taylor or mul-
tipole expansions (Subsection 3.5). The precision paramegenot a deviation from the
standardO(N?M?) non-multipole solution in a rigorous sense, but it does correlate wit
this deviation (Section 6). The relation betweeand M is found by trials, to make the
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error due to truncation typically negligible compared to the triangulation error (Section ¢
ase — 0, all terms of the Taylor expansions are eventually included.

A far more involved scheme is used to calculate the boundary-integral contributic
of surfacesS 2 y. Whenx andy in (2.7a) and (2.12b) are close, the kern@lx —vy)
and7(x —y) are nearly singular, invalidating a straightforward use of the trapezoidal ru
(3.1). Near-singularity subtraction [5] would suggest subtractirig®) and Q(x*) from
f (x) andQ(x), respectively, wherg* is the collocation node 08y or its periodic image,
which is closest tg. This simple procedure is suitable and greatly improves the integran
for the free-space case [31], but it overlooks an additional term for the double-layer i
periodic system (important at large volume fractions), because the integral identities (2.
are different from the free-space case. (This difference was not taken into account in
which made (2.3) therein not equivalent to the original boundary-integral formulation f
A # 1. This might have a small effect on the calculations in [5], singel was considered
only for c=10%.) Besides, it is not easy to reconcile near-singularity subtractions, ma
in a point-to-point manner in our algorithm, with multipole expansions. Obviously, the:
subtractions are meaningful only for close paksy), and using them for all pairs would
considerably slow down the algorithm without necessity.

With these considerations in mind, the single-layer (2.7a) and double-layer (2.12b) ir
grals over # §, > y are approximated as

/Sﬂ F0GX—Y) N dS~ 3 G —y) - W(x)) (3.82)
XjeSy
— > OKep W) D GolXj +kep —y) - N(X)) AS, (3.8b)
kap Xj€Sy

and

Z/SﬂQ(X) -y N0 dS A~ 3 Q) R —y) W) (3.98)
Xj€Sy

— > OKap, QX D TolX) + Kag — ¥) - WIX)). (3.9b)

Kap Xj €S

The summations in (3.8b) and (3.9b) are over all integer vekigraith ||x% + K.s — X I| <
d, +dg + ho, whereh, is the threshold parameter normally set toe0.Bhe nodex* € S
minimizes||x; + kqs — yll, and

* 2
O Ky, Y) = max{l — W, 0}. (3.10)
[0}

According to (3.10), near-singularity subtractions are in effect only when the distan
from y to a periodic image o8& (calculated as the node-to-node minimum) is less tha
ho. For [ly —x* —Kkaysll < ho, ® is close to unity, and the addends in (3.8b) and (3.9b
effectively cancel near-singular behavior of the addends in (3.8a) and (3.9a). At the s
time, according to the integral identities f@& and o, (3.8b) and (3.9b) disappear for
fine triangulations. Gradual transition &f to zero, as|ly —x* — kgl = ho, serves the
smoothness of the near-singularity subtraction. Our most recent experiments, not inclu
in Section 6, show that an additional smoothingafto make® e C2, slightly improves
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the convergence of the velocity iterations. In a large system, only a few valygsar
contribute to (3.8b) and (3.9b), and only one imag&gnfamely the one which minimizes
the centroid-to-centroid distance fra®, has to be considered. For smili(but still large
enough to provide at least several-fold advantage of our code over standard bounc
integral techniques), more than one imageSgfcan contribute to (3.8b) and (3.9b). The
simplest search o8 andk,s contributing to (3.8b) and (3.9b) is fast, and the noglase
limited by ||y — xg — ksl < dg 4 ho, and so the near-singularity subtractions have a sma
O(MZ?N) computational cost in the present applications, even with IBrg8ection 6).

Multipole expansions are used to handle (3.8a) and (3.9a), which would be most effic
for nearly spherical drops, since such an expansion at the drop center converges everyv
outside the minimal spherical shell around the drop. For strongly deformable drops at
volume fractions, however, these minimal shells considerably overlap, thus limiting the |
of multipole expansions (see below). To increase the robustness of calculating (3.8a)
(3.9a), we first slice all drops into compact blodks . . . By, (Ng > N). The simplest way
to doitis to cut every drojg, into

2rl, \ 2

o (2e)" ] 611
pieces by planes orthogonal to the line of maximum elongation with equal spacing (Fig.
wherel, is the drop diametet=max(||x; —X; [, Xi, X; € &) and the brackets in (3.11)
represent the greatest integer function; if a drop is compact, it coincides with its only blo
We identify each blocl3, with the set of collocation nodes in it and construct a minima
spherical shelD, aroundB, with a centerx) and radiusd?. Exact determination of}
anddy would be too costly; a simple, stochastic procedure with sufficient accuracy is us
instead (Appendix A). If a drof consists of a single block, , the block shell center)
is not necessarily the surface centroid (2.8), and the raifiysd;, in general. To avoid
confusion, we will reserve letters ands to index the quantities related to blocks, while
indicesa andp will be used for entire drops.

The calculations of (3.8a) and (3.9a) follow the same logic, and we will only consid
the single-layer sum (3.8a) herein; technical details about the differences between (¢
and (3.9a) can be found in Subsections 3.2-3.5. First, the free-space contribution of e
blockB, (y =1, 2, ... Ng) is expanded in Lamb’s singular form [32], i.e.,

o0

> Golxj —y)-W(x)) = [v x (R, x—+1) + V1)
XiEBy v=1
- ARCVP_ 1y . W+ Dp_apR,
2v(2v —1) v(2v — 1)

(3.12)

Here, the differential operations are with respecRjo=y —x?, and the negative-order
solid harmonics are

v de v+1
PR = Y A(’”(LH),m(R—V) Yom(Ry), (3.13a)
m=—v 4
v de v+1
(Df(erl)(Ry) = Z B(y(lJrl)’m(Ey) Yv,m(Ry)a (313b)
4

m=—v
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dO v+1
X—oi1(R,) = Z CLV(LH)m(RV) Yom(R,), (3.13c)
m=—v 4
)
ALty om= (DAY e BYigy m = (DB 1y ete, (3.13d)

whereY, n(r) is the standard normalized spherical harmonic [33]

B 1/2 _
Yo,m(r) = [%} P"(cosp)e™  (m=>0) (3.14a)
Yom(@® = (=)™, _m()  (M<0) (3.14b)

for a vector = (r sinf cosg, r sind sing, r cosd), PMis the associated Legendre function
(in the notation of [33, 34]), and the overbar denotes complex conjugation. The coefficie
AY) o me BY)ym andCY) o . (called hereafter “singular near-field moments”) are
truncated by < v+ 1, with the truncation boundy,,(y, ¢) determined as discussed

below. These moments are precalculated for all blocks by a fast, rotation-based algorithi
Subsection 3.2, before handling the sums (3.8a). Also precalculated are a sufficient nur

of “far-field moments”

DI = (D" 3 Zum(xj —X)Wk(x)),  Iml<v,  (3.15a)
XjeB,
éyr:nu = (-1’ Z Z,m(Xj — X )Wk(xj)( )l, Im <v (3.15b)
XjeB,

for every blockB, (the truncation bounds for (3.15) are discussed below). The functiol
Z, m(r) are denormalized solid harmonics,

220 0Y,, (1)

Zym(r) = [(2v + D) (v — m)! (v + m)1]Y/2°

(3.16)

convenient in the analysis of the far-field (Subsection 3.4). Now, to calculate the sum (3.
forye Bs C §,, each blockB, of the surfaces; # S, is temporarily shifted periodically to
minimize the center-to-center distarpe — x3|| (the necessary integer displacements may
be different for different block#, C S). We still denote here the objects associated witt
the shifted block by;, X3, D, and use the splitting (3.3) @&(x; —y) into the free-space
Go(x; —y) and far-fieldG.(xj —y) parts. If Ds N D, =4, the free-space contribution of
block B, to the sum (3.8a) can be evaluated/atB3;s by first reexpanding (3.12) af in
Lamb’s regular form [32]

N (N+3RVp, NPRs
nz::l [V X (Rsxn) + V& + 2n+1H@2n+3) (" +DLH2n+3) | (3.17)

where the differentiations are with respectRp=y—x3, and the positive-order solid
harmonics are of the forms

n R; n
pn(RzS) = Z An,m(d_(?) Yn,m(RzS)s n, m—( 1) An m» (3.18&)

m=-n
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Pn(Ry) = Y Bn,m((?f,) Yom(Rs),  Bom=(-D"Bym  (3.18b)
S

m=-—n

n n
xn(Rs) = Z Cn,m(%ﬁ) Yn,m(RzS)s Cn,—m = (—1)an,m- (3-180)
m=—n
Generally, the larger the gap betwepandD,,, the fewer terms both in (3.12) and (3.17)
suffice for this reexpansion. For a given precisigrtlose-to-optimum truncation bounds
vni(8, ¥) andny(8, y) are constructed (Subsection 3.5), to limit the reexpansion from (3.1
to (3.17) byv < vnt+ 1 andn < npe+ 1. When||x§ — X3 | > max(dy, d?), the boundsns
andn; approach 3 (this limitation being imposed to ensure absolute convergence of ren
block contributions in the “thermodynamical” limitl — oo, as discussed in Subsection
3.5), while vy, np— oo for ||x§ — xg | — d§ + d;’ or ¢ — 0. The reexpansion from (3.12)
to (3.17) is divergent for overlapping shell andD, and is also avoided for a small
clearance betweeR; andD, because of slow convergence. Our code has a threghold
(optimal values beingt O(M*/2), as found experimentally in Section 6). The shifted block
B, is called “sufficiently separated” from blodgs (which is denoted by, | Bs), if their
shellsDs andD,, have enough clearance, so thats, y) < ko, andnn(8, y) <ko. Note that
the relations, | Bs may be asymmetric and also dependskgande; ask, — oo, every
B, with Ds N D, = becomes sufficiently separated frd#n Reexpansion from (3.12) to
(3 17) is performed only foB, | Bs using a fastO(v3, n3)-algorithm of Subsection 3.3
with Wigner functions, and the coefficierkg, m, Bnm andC, n, in (3.18) are accumulated
as the contributions from all block$, with B,, | B;s. It is advantageous that the boungls
andny are small, except for close paiiS;, B,).

Before pointwise calculation of the cumulative series (3.17) for all collocation nod
y € B;, (3.17) is transformed to a more efficient form

fR(;Z pn<R5)+Z Z Hnm<do) Yom(Rs). (3.19)

n=0 m=-n

The vector coefficientsl, ,, are expressed in terms of cumulative harmonic coefficient
Ay ., B, andCy . in (3.18) by recurrent relations for spherical harmonics (Appendix B)
Using (3.19) in place of (3.17) greatly reduces the number of operations. The truncat
bound for (3.19) is

n < max npe(8, y) + 1, (3.20)
y:B,|Bs

which is typicallyn <k, + 1, except for low-concentrated systems.

If a shifted blockB,, is not sufficiently separated froff, the LHS of (3.12) is calculated
for y e B;s either as Lamb’s singular series (3.12), or by standard point-to-point sumn
tions. To this end, another economical boufidy, y) is constructed (Subsection 3.5), to
limit the summation in the RHS of (3.12) (and in (3.21) below)by vji(y, ) + 1 for
ly—xJ 1l >dJ. If yis “well outside™D, for a given precisiom (which is denoted by | 3, ),
so thatv:(y, y) <k, Lamb’s series (3.12) is used. The latter operation is considerak
optimized by transforming the RHS of (3.12) to

v+1
R Zp win (R, >+Z Z Fum( ) Yom(Ry). (3.21)

v=0 Mm=—v
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The vector coefficients, m for v <v,,,(y, €) + 1 are calculated wa\_(m) w B(—y(fﬂ—l),u’
andc") «+1).. (Appendix B) for every block3, , before the search is made 6y andy € Bs
for which (3.21) is necessary; there is no need, therefore, to store the coeffieignter
all blocks,, simultaneously. Only in the rare cases, wiyesinsideD,,, or is outside but
too close taD,,, so thatv(y, ¥) > Ko, should we use standard point-to-point summation:
(3.12).

The above scheme for near-field interactions also sets thelimjt- 1 onv in (3.12)-
(3.13) for a given precision. In particular,

Vmad¥) = maX{ max vni(8, ¥), ,max Vpe(Ys y)}, (3.22)
'vnff

y |Bs

which is typicallyv,,,,= ko, except for at low concentrations.

The far-field contribution of the shifted blodk,, i.e., the LHS of (3.12) witlG;(x; —Y)
instead ofG,(x; —Y), can be evaluated gte B; using a special form of Taylor double
series in powers of; —x3 andy — x3 for Stokes flows,

3 (X)) (G (%) — Z Z Zom(y — X {Z > DY kLot

XjeB, n=0 m=—n v=0 pu=—v
o o o ) m+u ()/) m+u
+(y = %5 + % = x7), D)Mok — B Mn+v,k}'
(3.23)

The detailed form of (3.23) is given in Subsection 3.4, the coefficieffis; and M
being related to high-order derivatives @) (r) and the associated pressm{@ (r) at
r=x3 —x>. The numbeiN of drops in the cell is assumed to be not too small, so that

sy = {1— 2max{ | X — x? X |a 1+ (x5 —x‘;)z} v dy+d°. (3.24)

o (o]
v 1% =X,

The condition (3.24) guarantees that the stiglidoes not overlap any periodic images of
D, except possiblyD, itself (recall that|x — x7|k < 1/2 is assumed), and so the series
(3.23) is convergent. Moreover, for large systemds{ O(100)), the convergence of (3.23)
is fast, and typically only low-order terms suffice. Three more truncation bounds are ct
structed (Subsection 3.5%(8, y), Nx(8, ), andvg (8, y), to limit the summation in (3.23)

by
v < v, n < ng, v+n < g, (3.25)

for a given precisior. The form (3.23) is used to accumulate contributions from all block
B, 08, >y, with Li% % | and M1 ¥, calculated by the tables of high-order derivatives
of G;-related functions (Subsection 3.5). The cumulative expression, as a function
Rs, has the same structure as (3.19) for the near field, and the two are combined
fore fast pointwise calculations for all collocation nodgesB; are made. The truncations
(3.25) also set the limit om in precalculating far-field moments (3.15) for every block
B,.

Our far-field scheme is cleari® (N?)-intensive, but the coefficient befol? for N > 1
is very small, since folN > 1 the boundss, ng, and v are O(1) and are practically
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independent oM in the present applications, the total cost is strongly dominated by ne:
field interactions between close blocks, even for quite large systems. For this reason, r
involved schemes [12, 19] for remote interactions designed to elimi@ai¢?) scaling
were not incorporated in our algorithm.

Partitioning of elongated drops into compact blocks is particularly helpful in the far-fie
part for moderately larg&l. Without this option, the convergence of (3.23) may be mucl
slower, and we had difficulties in tabulating a sufficient number of high-order derivativ
of G;-related functions. For self-interactions, however, partitioning into blocks is not use
since these derivatives are required only-at0, and can be calculated to high order in case
of slow convergence.

The following Subsections 3.2-3.5 elaborate on the multipole details of our code. Ad
tional aspects of the algorithm are discussed in Sections 4 and 5.

3.2. Fast Calculation of Singular Near-Field Moments

A large portion of the total computational load is spent on generating (3.12)—(3.13) a
whena # 1, similar expansions for the double-layer,

D QX)) - To(xj —y) - WOX) =Y {V < (Ry X—+1)) + VO_ 1)
XjeB, v=1
298 ~
_ (U—Z)RVVp_@H) (v+1 p_(v+1)Ry +V&>71,
2v(2v—1) v(2v—1)
(3.26)

on every iteration. The harmon|q5_(v+1), o w+1), and x_+1) have the form (3.13a)—
(3.13c), withA”  v+1).m» €tC., instead oA" ()V +1).m» €tC.; the source termi®_, is absent for
the single layer (3.12). This task is a particular case of translation of Stokes singularit
and the general relations of Sangani and Mo [11] could be used for this purpose. Howe
an alternative, rotation-based technique is used herein, since it considerably reduce
number of operations in generating (3.12) and (3.26), and greatly simplifies the algel
The idea of our approach is to generate the expansions

Go(Xj —y) - W(Xj)

- 2o () )
_ . w-2RrRvpY, . w+pp!
=3 [V x (RyxY voU) o o
; x (Ry xZrn) + VO — 2v(2v - 1) * v(2v =1
(3.27)
or
e} .
QX)) - ToXj —y) - W(X)j) = Z v x (Ryf(ij()vﬂ)) + V®(J(V+1)
y=1
()
_ (l) — 2)R12,VD_J(V+1) (V + 1) p—(v+l) + V&)(j)
2v(2v — 1) v(2v — 1) -
(3.28)

for a single node;, using a preferred, “intrinsic” coordinate systen; (x5, x3) with the
X5-axis alongp = X; —x° (Fig. 3), then transform harmonlqaf w1 (Ry), d)_(u+l)(R ),
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FIG. 3. The rotation-based scheme for calculating near-field moments.

andy (V+1)(R ) (or pﬂ()v+1), CT)(_j<>V+1), andx“fj()v+l>) into the old coordinatex(, xo, X3) (the

same for alk;), and accumulate contributions from all nodgs= B,, in this manner. This
procedure is reminiscent of using rotational transformations in conductivity simulatio
[16, 17]. An intrinsic coordinate system is not unique, but the freedom of rotation about
x5-axis does not affect the result.

In deriving (3.27)—(3.28) in the intrinsic coordinates, we omit primes and idemy; ),
Q(xj), andR, =y — x)‘i with W, Q, andR, respectively, for brevity. The pressup&’(y)
associated with the Stokestety) = Go(xj —y) - W is

- 1 1
p(J)(y):A].jTW.Vy<r>’ r=y-—Xxj. (3.29)
The addition theorem for spherical harmonics greatly simplifies in the intrinsic coordinat

Y2Y,0(R)
re Z <2n T 1) Rt P (3.30)

Using the well-known relations

(D £iDy)

Yam(R)  _[Cn+DEm+DHEm+2]* Vo1 mua(R)
RML 2n+3 nt2

(3.31)
D3

Yam(R [+ D —m+Dn+m+1) 1" Yor1m(R
R+1 T 2n+ 3 Rn+2

(whereD; =9/0R is the Cartesian partial derivative) mt= 0 and differentiating (3.30),
the pressure (3.29) can be expanded into spherical harmonics,

S n-1

PPy =3 p, P —_{[n(n+ DIYZ[(Ws +iW2)Yn _1(R)
Z o+ (R n; 4z (2n + D]Y2R+L

— (W1 —iW2)Yn 1(R)] = 2nWsYn o(R) }, (3.32)
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which immediately gives the coef‘ficienit!é_j()wrl)’rn in

. do v+1
pUlin(R) = Z Aﬂngm( ) Y,.m(R). (3.33)

m=-1

To find QJ(_j()v+1) (R), we use the general relation [32]

+1 i
w(y)-R= ZLE; )RZ 9 e — (v+1><1>93u+1)]. (3.34)

By (3.3b), the LHS of (3.34) can be written as
1 1 1 1
——|W-R|==R-V,= W.p)R-V,=|. :
8 [( )(r yr>+( P) yr} (3.35)

To expand (3.35) into spherical harmonics, additional recurrent relations are needed:

(RiEiR)Yam(R)  [(nExm+1H(nE+m+2) 1/2Y .
R B [ @n+1@2n+3) ] n+1.mx1(R)
—1 1/2
|: (n(;;T_ 1) (;:1”_¢1;n) :| Yn—l,mil(R)a (3.3661)
Rs (n-m+DH(n+m+1)77
7Yn n(®) = { @n+1)(2n+3) } Ynt1,m(R)

Jr[(n—m)(ner)

1/2
(Zn_l)(ZnJrl)] Yo-1m(R). (3.36b)

Substituting (3.30) into (3.35), and using the homogenity of solid harmonics [32] al
(3.36) atm =0, one obtains

_ (n+ 3)pn+l
@O R=2. 5o B+ DR

x {[n(n + DIY2[(Wy — iW5) Yo 1(R) — (Wi + W) Yp _1(R)]

(n+DHW-p)p" Yno(R)
4[r(2n + 1]¥2 Rl

—2(n + HWsYno(R)} + Z . (3.37)

where we have omitted the terms of the tyRtimes a solid harmonic of negative order

(those terms matchr? p(J()vH)—terms in (3.34) and would only be needed to determing

p"),,1, already provided by (3.32)). Comparing tibepart of (3.34) with (3.37) gives the

coefficientsBY), 1,  in

1

de v+1
<1><13v+1>(R) Z B(_J()v+1)m< F:) Y, m(R). (3.38)

m=-1
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The calculation oﬁ(fj()vﬂ) is even simpler, through the relation [32]

o0

[Vxw]-R=>_n0+Dx (3.39)
n=1
As follows from (3.3b),
1 1
[Vxwly] -R= _EW. <R X Vyr>. (3.40)

Substituting (3.30) into (3.40) and using the relations

Yn.m(R)

(ReDs = ReD2) —piir— = —5parg {L(N =M+ M+ DIV Vomia(R)
+IM=m+ D +m]YNom (R},
Yom®R) _ 1

(RsD1 — R D3) —mn+m+ D]Y?Y, me1(R) (3.41)

R+1 2Rn+1{
+[(n—m+D(n+ m)]l/zYn,m—l(R)}’

Yn,m(R) im

(RiD2 — ReDy) R+l Rntl

Ynm(R)

atm =0 allows us to represen¥[x w(y)] - Ras

ad 1) 1Y% o0 . .
Z{;((;ni M LW + W Yaa(R) + (Wa — WaYo 4R (342
1

Comparing (3.39) and (3.42) gives the coefficie®t§ , 1, , i

d° v+1
X(J()U+1)(R) = Z C(]()erl) m( F;) Yv,m(R)- (343)

m=-1,1

To expand the stressldt(y) =Q - 7o(X; —y) - W in the form (3.28), we switch to the
weights (3.7) and generate (3.27) first for the Stokeslgh = Go(x; —y) - W, as described
above. Sinc&?¥ (y) = —V[2Q- V pl)(y)], the pressurd) (y) = —2Q- vV pli)(y) associ-
ated with® (y) is easily expanded into spherical harmonics, using (3.33) and (3.31), whi

gives the coefficientd”), . in

2 d° v+1
pl R =Y AQ()U“)m(FZ) Y, m(R). (3.44)
m=-2

To find cTD(_j()U+1)(R), we use again the property [32]

+1 o
(y)-R= Z{ZE; ) Repl) ., - (v+1)<1>“(v+1)] (p)) = p!) = 0). (3.45)

Note that®(y) - R=—RQ- T, WhereTr is the stress vector on the sphere of radius
centered at(‘; for the Stokesletv(y). Sincew(y) is expanded in Lamb’s form (3.27), a
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ready expression farg can be used [32], resulting in

T(y)-R=Q- Z {(n +2Vxy x R+2m+2)vel)
n=1
@+ DRpYey (4 D(n— DREVPY)
nizn—-1) nzn—-1)

(3.46)

Substituting (3.33), (3.38), and (3.43) into (3.46), and using the relations (3.41), (3.3
and (3.36) allows us to represent (3.46) in the form (3.45) and calculate the coefficie
BQ)

“tny.m N
) < (i) d v+1
30 (R = Z BY 1, m( ) Y,.m(R). (3.47)
m=-2
The coefﬂuenté:“EHl) m are determined from (3.39), witr(y) and x;,_ ;) in place
of w(y) andx_(n+1), respectively. Using
T(y) = pV(NQ— V[w(y) - Ql = (QV) w(¥), (3.48)

one can derive
(Vx¥) -R=-Q- (Vp? xR) = Q- V[(V xw) Rl + Q- (V x w). (3.49)

Sincew(y) is expanded as Lamb’s series (3.27), a convenient expression [11] can be us

o0

1 .
Vxw(y = Z [ an(J()nH) - HR X Vp(J()n+1):|' (3.50)
n—1

Substituting (3.50) into (3.49) and using (3.39) gives a compact relation:

o0

- o~ [(—1) |
Sov007 %y == Y | TP (TR xR 404 2Q Vo |- (@51
v=1 n=1

Finally, by (3.33), (3.43), and the recurrent relations (3.31), (3.41), the RHS of (3.51)
expanded into spherical harmonics, which gives the coefflctéHi§+1) mi

2 dO v+1
iR =" C%H)m( FZ) Y, m(R). (3.52)

m=-2

It remains to subject the sparse matrio&8), , .. A% B9 B L
CY 1 m and€Y) 1 | to rotational transformation into the original coordinate systen
(more detail on this operation is given in Subsection 3.3) and accumulate contributions fi
allnodes; € B, in this manner, to obtain singular near-field mome&ﬂ%m me AT
etc. Although thls rotation-based technique still hasdtv,,,)?|3, |] computational cost
(where|B, | is the number of nodes; € 53,), it reduces the number of operations com-
pared to direct singularity translations, besides greatly simplifying the algebra. Our fu
optimized rotation-based routine take® & 1077 (v;,,)%1B, | and 43 x 10~ (v,,02|5, |
seconds of CPU time to generate the single-layer (3.12) and double-layer (3.26) ex|

sions, respectively, far,,,,>> 1 on a DEC 500au workstation. These times are 2.3-fold an
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2.8-fold faster than for the optimized routine without rotations which we used for compe
isons. On the other hand, when solving the Laplace equation in a multiparticle system [
similar hybrid of multipole and boundary-integral techniques, it would not be advantagec
to use rotations for calculating singular near-field moments.

3.3. Fast Algorithm for Regular Near-Field Moments

Another principal task, as outlined in Subsection 3.1, is to accumulate Lamb’s singu
contributions (3.12) or (3.26) from all block, | Bs and represent the result as Lamb’s reg-
ular expansion (3.17)—(3.18) centered@tOur code in this part closely follows the idea of
the “rotational algorithm for the near-field operator” in conductivity simulations [16], witt
substantial use of Wigner functions. Namely, a temporary, “axial” bagjx§, x3) is intro-
duced for block#; andB, , with thex;-axis along the center-to-center ved®yy = x5 —Xxg
(Fig. 4). The harmonice_ (1), P—(+1), ANAX—_+1), OF P41y, P (v41), ANAYX(p41) IN
Lamb’s singular expansions (3.12) or (3.26) for bl&kare first transformed into the coor-
dinates(x], x5, X3) by Wigner functions (see below), then (3.12) or (3.26) is reexpanded
X3 as Lamb’s regular series (3.17), the harmomigs®,, andy,, are transformed back to the
original basis X1, X2, x3) and the contributions from all blocks, with B, | Bs are added,
to produce the cumulative near-field momeAtsy, Bn.m, andCp . Most importantly, the
computational cost of eadB, — B; reexpansion in this scheme @&(v3, n3;), compared

nfs

to O(vi%, n) for direct reexpansion without rotations. For Laplace interactions, Zinchent
[16] found 3-fold and 6-fold advantages of this scheme over the direct reexpansion:
vnf = Npe= 10 andvy; = N = 20, respectively. For the Stokes problems, even much great

gains are expected.

FIG. 4. The rotation-based scheme for block-to-block reexpansions.
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The rotation from the originalxs, X2, X3) to the new(xz, X5, X3) basis is a sequence of
two transformations: (i) rotation about tlxg-axis of angleys, and (i) rotation about the
new x;-axis of angle¥;, , where

. . 1/2
explixs,) = —(Xa +iX0)/ (X2 4+ X3)7%, 0< x5, <27,

(3.53)
n = cos¥s, = X3/Rs,, 0<V¥s, <m,
andRs, = (X1, X2, Xg) in the original coordinates (in the degenerate cése= X, =0,
the value ofys, is arbitrary). The third Euler angle can be set to zero. (L&tv’, ¢’) be
spherical coordinates associated Wi#j, x5, x3). It follows from the theory of Wigner
functions [33] that

Yom(®,9) = Y expimis,) Pr w (¥sy) Yo (0, @), (3.542)
[m'|<v

Yom(®,¢) =Y (=)™ exp(—imxs,) Py m(Ws,)Yom(8, @), (3.54b)
Imj=<v

The relations (3.54) allow us to transform harmonic coefficients ff@mx,, X3) to
(X1, X3, X3) and back, if the complex coefficien®, ., are known. These coefficients obey

Pom = Powm: P = Pl (3.55)

and are related to Jacobi polynomials [33], which give different recurrent schemes. Merr
limitations do not allow all necessary-coefficients to be stored, and they are instea
calculated on every iteration, with a small additional cost. The fastest way, as noted
Zinchenko [16], is to introduce rei-coefficients,

Piw = 1M€o m/Com) X, IM<m<v, (3.56)
where
1 (2v)! 12
Com= — , 3.57
M v (v —myl (v + m)! (3.57)

and use the recurrent scheme

ntl

Xo=1 X, = —XiC tiwoy  (forv>1), (3.58a)
1
X = > sinWs, X!71y  (for m'| <v — 1), (3.58b)
v _ 1 /Ny v—1 ; v—1 ’
X = m[(vn—m)xmm,—vsm\ll(;yxmﬂm/] (forim|<m<v-1)
b _ ,

(3.58¢)

(omitting the last term in (3.58¢) fan=v — 1). Relation (3.58c) was observed to lose
stability [17], but not untilv exceeds 100-115 in double-precision calculations. An alte
native, slightly slower scheme was found to be absolutely stable [17]. However, since
maximum values of in the present work were about 20 (Section 6), the fastest scher
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(3.58c) could be used safely. Rotational transformations of harmonic coefficients betw
(X1, X2, X3) and(xy, X5, X3) are further expedited by (28)—(29) of Zinchenko [16].

It remains to discuss how to reexpand Lamb’s singular form (3.12) or (3.26) for blo
B, as aregular series (3.17)4t with the harmonics written in the axial bagig, X5, X3).

It appears that reexpansion relations from Lamb’s singular to regular forms have b
independently rederived by several authors. Happel and Brenner [32] considered this tr
formation, but used coordinate systems with polar akes0 normal to the translation
vector, which made the relations too cumbersome and noneconomical. Mo and San
[35] developed a more attractive formalism, not limited to a particular choice of coordine
systems, but without using the advantages of axial coordinates. Earlier, Zinchenko [36,
gave compact reexpansion formulae in the axial coordinates, but only for azimuthal numt
m=1 and 2. Below, we generalize the relations [36, 37] for arbitrary azimuthal numbe
with a short and simple derivation following the logic of [36]; alternatively, the general, bt
not simple relations of Mo and Sangani (Appendix | of [35]) could be applied in the axi
coordinates for a free-space case to reach the same goal. The transitions from (3.12]
(3.26) to (3.17) are the same, and we only consider (3.12), with the summationrange
andp_; = x_1 =0, to cover both the single-layer and double-layer cases.

Assuming thatA”) ., . BY) ., andCY(_, . have been transformed to the axial
basis(x3, X5, X3), primes are omitted in the following calculations using these coordinate
The generalized addition theorem for spherical harmonics (e.g., [38]) greatly simplifies
the axial coordinates,

de v+1 o0 0 n
(g) YonRp) = 3 r:?n<@) Yom(p). (3.59)
Y n=|m| ')
where
2v+1 2¢ mCn,mCn+v,n— 2\t n v+1
rm = (—pUtm Sl ALty [ d?) " (d? 3.60
ool e (2 apigrt s

and, for brevityR; =y — x§ = p. The relation (3.59) immediately give’, , for the B, —
Bs contribution:

Anm= > T A" 1 m (3.61)

v=|m|
To find C,, m, we dot the curl of (3.12) withp, yielding

[e¢]

> n(+ Dxn(p)

n=1

o
1 IP—(+1) d O X—(w+1)
_ 1 L A0t RV wen| b, (3.62
Vg_l{ vR‘W 90 +pap X-0+D TP ap by © VX-(+1) (3.62)

Here, the partial derivatives are taken in the spherical coordirjates ¢) associated
with the axial coordinate system centerekatThe harmonics (3.138)_,+1)(R,) and
(8.13c)x—w+1 (R,) are expanded neaf by (3.59), and th&;, - V-term in (3.62) is then
handled by the relation

1/2

2 H(n—
EEDO=OEM sy, (e (363)

2n—-1

D3pnYn,m(p) =
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whereD3; = d/dp3 is the Cartesian partial derivative. This procedure gives

imR;, <= 1 ad
_ y m A m ~)
Cn,m - _n(n +1) Z ;Fv,nA—(v-HL),m + Z F1),nc—(|)+l),m

v=|m| v=|m|

Rsy [(2n+3)(n —m+DH(n+m+ 1)]1/2 i -

(N4 Dd? n+1 v

CYipm (3.64)

v=|m|

(omittingv = 0 form=0). For calculatingd, m, we dot the velocity (3.12) witj, to obtain

- np?pn
2 [Z(Zn +3 " nq)“}

n=1
00 acbf(erl) > 3X,(V+1) ° v+1) )
_;pm}_%y;&p—l—;[v(h—h(p —Rsyp3)p,(v+l)
v =2)p 2 2 IP—(w+1)
2@ -1 Ry =2 0y | 3.65
2@ - T TR, (3.65)

whereps is the Cartesian component in the axial basis and, again, the partial derivati
are taken in the associated spherical coordingtes, ¢) centered akj. Expanding the
harmonics (3.13) by (3.59) in terms pf and using the recurrent relation (3.36b), one cat
obtain from (3.65)

im ad o 00 o
Bum = —Riy > TIC 0 ym+ D TThB s
v=|mi v=|m|
- R? i Mrm A®) n Rs,d? [ (n—m)(n+m) 172
8y et 202y — 1) v -(ADm n [(@2n-1)@@2n+1)
o0
[(n—DH(v—-2)—(v+1)] o
) Z v(2v — 1) 1—“Tn*lAj/(val),m (3.66)
v=|m|

(omittingv = Oin the last two sums fan = 0). The transformation relations froA”), ., .
etc., toAn m, etc., are identical to (3.61), (3.64), and (3.66).

Our optimized routine based on this simple, axial form of reexpansion relations a
rotational techniques (see above) is quite fast. For examplepyyithny: > 1, it takes only
1.4 x 10~"v3 seconds of CPU time on a DEC 500au workstation to reexpand (3.12)
(3.26) into (3.17) for onés,,.

3.4. The Far-Field Part

Our approach to calculating the far-field part of the boundary-integral operators is ba
on the special form of the Taylor expansion for a harmonic funcfiog,

FOO=> "> duufOhe0Z0u00,  8yu=(D1—iDx)*D5 ", (3.67)

v=0 p=-v
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whereD; = 3/9X; is the Cartesian partial derivativd), —iD,)* = (=1)*(Dy +iDy)™*
for u <0, andZ, ,(x) is the special solid harmonic (3.16). The expansion (3.67) directl
follows from Lemma (B.1) of Zinchenko [17] and is also equivalent to (27) of Sangani ar
Mo [11].

Another useful observation is thaix) — % p(X)x is a harmonic vector field, v(x), p(x))
are the Stokes velocity and associated pressure, respectively, with unit viggositsnay
be compressible, only?v = Vp andV2p = 0 must hold). It is convenient to introduce a
harmonic field(gy # gik)

gmU)—(Glnmn———q“%ﬂn, (3.68)

Whereq{k)(r) is the pressure associated with the Stokes vel@¢®y)k1, (G1)kz, (G1)ka),
and apply (3.67) to botty; andg. . Using the symmetrg(—r) = g(r), g\ (—r) = g (),
one obtains

> WX (G (Xj — )

XjeB,

_ZZD\)/Lkavugkly X ZZ EV;kl

v=0 u=—v v=0 pu=—

+ (X = DY) ] (Y — X2, (3.69)

where D(”) xand EEV/L,(’I are the far-field moments (3.15). The high-order derivatives i

(3.69), as harmonlc functions gf can be expanded gt=x} by (3.67), leading to

> W) (G (Xj — )

XjeB,
o0 n o0 v
=>»> zn,m<Ra){Z > [Di?g_kanﬂ,mwgk.(Rys)
n=0 mM=—n v=0 pu=-v
1
-5 EU 1.k Ono, m+HQ1 (Rys) + = (Ryé)l N M k3n+v m+MQ1 (RyS)

RNy 3 Zan®)S S DY inesmet¥ Ry (370

n=0 m=—n v=0 pu=—v

with R,s =x§ —x7. The expansion (3.70) is a detailed form of (3.23) and, as a function
=y —Xg, has the same structure as (3.19) (recall (3.16)).
The far-field expansion for the double-layer contribution can be obtained in the sa
manner:

D Qs (zaksi(Xj — YIWh(X;)

xjeB,

= Z Z znm(Ra){Z > { 7 ks metisl (Rys)

n=0 m=-n v=0 u=—v



INTERACTION OF MANY DEFORMABLE DROPS 563

+ = 2 E( k.S, 8n+v m+ﬂq1k5)(Ry5) + - (RyzS)l \; p_ k, san+v m+MQ1 (RJ/B):|}

1 oo n oo v N N
+5RND D ZomR) Y D B ksdnruminli T Ryn).  (3.71)

n=0 m=-n v=0 u=—v
Here,q{"s) (r) is the pressure associated with the (compressible) Stokesian vélag)ty ,
(T)ke2. (T0ks3) (1) (80 thatd™ (1) = ¥ (1) = G (1)), and

tisi(f) = (T)ksi(r) — fqiks)(mr (3.72)

is an auxiliary harmonic field, witkys(r) = tsi(r) = —tysi(—r). The double-layer far-field
moments

DY) s = (D" 3 Wiex)) Quo (X)) Zo e (X — X3, (3.73a)
XjeB,
E kst = (=D ) (%) = x9), W) Qu(Xj) Zyu (X} —x3)  (3.73b)
XjEBV

(whereWsQy) = %(Wst + Wk Qs) is the symmetrization in indicesandk) are precal-
culated for all blockd3, on every iteration, before the sums (3.71) are calculated.

Sangankt al.[39] and Zinchenko [16] developed different formalisms to calculate nec
essary high-order derivatives of the periodic Green'’s function for Laplace interactions.
computation of high-order derivatives in (3.70) and (3.71) is slightly more complex. We st
from Ewald-like forms forG; = {(G1)x } and associated pressumgs= (qil), q{z), qf))

1/2

L
/ e ™[I + 2t?xx] dt

4732

” 212

1 1 e—nkz—erik~x
- — "M—rmkk(1+ — || ————, 3.74a
e 2 (1 S )| @74
1/2

_ X T —t2x2 2 —tz(x—k)2 2
ql(X)_—X—i—m/O t2dt — 3/22(’(_")/1/2 t2dt

Gi1(x) =

kefnszzrrl k-x

i
——E . (3.74b)
2
2T ” k

where the summatiod_" is over all integer vectork = (ky, ko, k3) # 0. The average of
G1 + Go over the celV =[0, 1)% is zero, as required in Section 2. One way to derive (3.74
is to use Hasimoto’s expressions [27] f8¢x) and Vq(x) for a special lattice considered
herein and then subtract the free-space contribusairs) andg,(x). Beenakker’s approach
[28], although popular, gives slower convergent series (by a factor(kf) for each term
both in the real and reciprocal spaces); besides, (3.74a), (3.74b) are much simpler and
amenable for calculating high-order derivatives.
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According to (3.68) and (3.74),

1/2

/e 1 / e e}
Os1(X) = o 3/2 / et gt _ Y= Z /l/zeftz(xfk)z [85|—2t2(xs—k5)k‘] dt+ ---,
K /g

(3.75)

where only the integral (real-space) contributions are shown (the other terms are eas
differentiate). Generalizing (58) of Zinchenko [16], we have

0 a\'/ 9 \"" ° 2
— —i— ) (— z t2PetY dt
(3)/1 Iayz) <BY3) [ nm(¥) /211/2 © ]

(=D (0 — Wl (s — Y2 s
2p+1z o n i s e Zas s (3.76)

for 0< u <v, |m| <n, where the summation is over all integers with

0<s=<u, O<l<min(v—pu,n—m), 25+l <n+m, (3.77)
and
41 00 )
Iy = [ tUTH, L (yshe ™Y dt, (3.78)
v 72 | 1.

with Hp (&) being the Hermite polynomial [33, 34]. Relations (3.76)—(3.78) also hold fc
the integrals over [0r/?], and efficient recurrent schemes [16] can be used for calcula
ing J/* in both cases. Sinces — ks is a combination of harmonic&; m(x — k), relations
(3.76) forp=n=1 andp =n =0, together with (3.16), (3.74)—(3.75), suffice for a simple
computation ob, ,g(x) andad, , 0, (x) to an arbitrary order.

Ewald-like forms for the stresslét;)ys) and associated pressuféés) are not required,
sinced, , tyxsi(X) anda, Mq{ks) (x) are simply expressed vi&, , g andd,, /0, (X). Indeed,
with a suitable choice of an additive constaiit™ (x) = 200" (x)/dx, (cf. with Subsec-
tion 3.2), and harmonicity af,” implies

u qu_l 9 (aerl,anl - 8v+1,ufl)q;§_5)’ v qu,z 9 =i (av+l,u+l + 8U+1,M71)Q](_S)7
) (3.79)
~ S S
v ,qul ) = 28v+1,uq:([ )'
Besides, it follows from (2.2), (2.9), (3.68), (3.72) and the symmeti§, dhat
1 1
tisi(X) = —Qf ' Sks + Eqis)Skl + EQ£k)55| + Dx0si + DsQx — SksX - (3.80)

Sinceg(x) is harmonic, the same algebra asin (3.79) allows us to exfiress, via d, 11,9
anda, ,q;.

Our fast calculation of the derivatives in (3.70) and (3.71) at each time step is basec
a precalculated table &, 0k (X) andap, mqlk) (x) (with 0<m=<n andk <I) on a mesh

= (n1h, nzh, ngh), whereh =0.5/Nr, the integers; are in the range & n; <n, < Ny,
05 nz < Ny, and Nt is typically about 20; the maximum order depends on the systel
size. For a givelR,; € [—3, 2)3, the nearest node = (n¢h, ngh, ngh) (with [n?| < Nt) is
found, andd, ma« (for k <l andk >1) anda, mq(k) are calculated at this node based on
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the table and symmetries Gk andq;, (see (3.74)). For (3.709n mg(R,s) andon md; (R, s)
are then computed as second-order or third-order Taylor expansicgdut(3.67), for
example,

InmIRys) = > D dnpumend(X0) Zuu(Rys — Xo) (3.81)

v<2o0r3u=-—v

(whichis more appropriate than the simplestlinear interpolation, 8ingg(x) andd, md; (X)
are slowly varying in the range; | < 1/2 only for very smalh). For (3.71) 9n mt(R,s) and
In.m0y (R, s) are expressed Vit 9(R,s) anddy,m 0, (R, s). To cover all the simulations
and more demanding tests in Sectio®,g andd, mg, were tabulated up to=20 on a
mesh withNt = 20, although medium-precision dynamical simulationsMos 100 typi-
cally require much smaller valuesof The single-precision format was found sufficient for
extensive tables df, ng andd, ma;, while double precision is used in the rest of the code
For typical truncation bounds; = ng, v = 0.7(vg + ng) in (3.25), it takes our algorithm
about 5x 10~ (v + 1)* seconds of CPU time on a DEC 500au workstation to calculat
the coefficients beforg, m(R;) andR; Zn m(Rs) for (3.71), and half as much for the single-
layer case (3.70). With the quadratic Taylor approximation (see above), additional operat
on calculating the derivatives in (3.70) or (3.71) slow down the far-field part by 22 to 45
for typical v, ng from 7 to 4, respectively.

The far-field part of self-interactions (Subsection 3.1) is a particular case of the conside
scheme, whei8, constitutes a whole drop a},s = 0 in (3.70)—(3.71).

3.5. Economical Truncation Bounds

Unlike in the other parts of our code, there is a considerable freedom in constructing
truncation boundsyy, Nns, v, vir, Nir, andvg; (Subsection 3.1) of multipole expansions for a
given precisiorz. In principle, any choice of these bounds, such that., etc. — oo (if
unrestricted by,) for ¢ — 0, is allowed, since this condition alone guarantees the conve
gence to the standard, nonmultipole boundary-integral solution for a given triangulati
However, an unreasonabled hocchoice of the bounds (especially, unifonsg, Nns, vy)
can greatly reduce the performance. Most importantly, only the interaction of low-orc
multipoles is long-ranged, and so optimal near-field truncation bounds should be stror
sensitive to mutual geometry of the blocks. Rigorous majorants for multipole coefficiel
are problematic, especially far# 1, and they would probably greatly overestimate the ac
tual truncation errors. Instead, our approach is based, in part, on some plausible argun
about the behavior of multipole coefficients.

We start from determining the boundg + 1 andny; + 1 onv andn, respectively, in
the reexpansion from (3.12) to (3.17) assumidgn D, =§. For a fixed direction of
R, =y—x?, (3.12) can be viewed as a Taylor expansion,

0 0\ k+1
> Golxj —y) - W(x)) = Zak<Ry> : (3.82)
i Yy

Xj EBV k=

convergent foR, > d?. The asymptotic behavior ¢dy| for k> 1 is related to the behavior
of the LHS of (3.82) ay — x;:, wherex;. € B, is the node withx;- — xJ|=d). For a
continuous distribution of Stokeslets, the single-layer gradient is finite at internal poi
of a surface and only logarithmically singular at the edge, so an approximate beha
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a, = O(k~3) is assumed for moderately largeAt k — oo, howevera, = O(1) due to the
discrete structure of the LHS of (3.82), with a pole singularity atx;.. The following
model of|ay| is assumed foall k:

C,/(k+ 1)3, k < kg
= {0 ' (3.:83)
Cy/ker+ 17  k>Ke.
Numerical experiments suggest the switch value
ker = 2d9(A ;)72 (3.84)

whereAS; is given by (3.2). The consta, is estimated by consideririg=0 in (3.82):

ZW(X)

XjeB,

(3.85)

G = 471d°

SinceR, > Ry, — df fory € Bs, the series (3.82) is majorated by a double series:

00 0 (k + n)! de n/ de k+1
Z Z lIln,k, ‘yn,k = |a| k'nl_ (Rs—js é . (386)

k=0 n=0 o Y Y
Obviously, (3.86) mimics the reexpansion from Lamb’s singular (3.12) to regular (3.1
forms. The bounds(8, y) andnn:(8, y) are such that the remainder of the sum (3.86) is
within a prescribed tolerance:

€nf Ri4e
E W, < €1, g1 = 5y_4. (3.87)
n,k:n>nNpt ork> v ZV R5V

The summation in the RHS of (3.87) is over all blodks ¢ S,(where §, is the drop
containing3;) ande,s = O(1) is a numerical factor found experimentall?;f is chosen as
the simplest function integrable at infinitydt? (cf. [16]). The form (3.87) for; guarantees
that the sum of the omitted contributions fraih 3, to (3.86) is less thagyse.

We first findvy,s from

33 wnk_<k§jo §_j>|ak|( % )k+1<821 (3.89)

n=0 k=vp+1

(seeregion A in Fig. 5.) This task is easy, since the first sum in the RHS of (3.88) is kno
explicitly through (3.83). The bouna is then determined from

Vo Vnf k+1 Dot nf
Z Z‘I’nk—z|akl( ) Zzwnw—l (3.89)

n=np+1 k=0 n=0 k=0

(see region B in Fig. 5). Inequalities (3.88)—(3.89) imply (3.87ynif> ko, Or nps > ko, Or
Ry, <dj + dy, the boundv’; + 1 onv is used instead for pointwise calculation of (3.12)
forye B;, R, > dJ. This bound is simply determined from

Zlak|< >k+l anjlakl( )k+l<al. (3.90)
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T

i n>Npf, KSvpg

L

A: k>vp¢

%
0 k

FIG. 5. The determination of near-field truncation bounds.

Avery similar technique is used to limit the summationsby by + 1 andn < fip; + 1in
the double-layer reexpansion from (3.26) to (3.17), and also to find the bgiiydy) + 1
onv for pointwise calculation of (3.26) in casgs> ko, Or fin; > Ko, 0r Ds N D, # 0. The
RHS of (3.26) is estimated as

00 0\ k+1 S /K2 k ;
>a(g) |ak|={9/ LT 391)

k=1 )/ Cyk/ kgrs k 2 kCI"

The switch valuek; is still given by (3.84). The form (3.91) vs (3.83) reflects a highe
double-layer singularity. The consta(ﬁ; is estimated as

~ 3
C, =—-
T an(do)®

(Euclidean norm is used for the matrix (3.92)). All the relations (3.86)—(3.90) hold f
determiningvys, finr, and vjy; only k=0 is excluded from the summations. Besides,
differs from (3.87) by a factor of&;/|A» — 1| instead ofe,;, whereé&;= O(1) is another
coefficient determined experimentally; the presence 0f 2- 1| serves to balance the
truncation errors for the inhomogeneous and double-layer terms in (2.12b).

For the far-field, we note that the terms in the RHS series (3.23)with > 3 could be
evaluated as 6, (x; —y) was a formal sum of free-space contributi@igx; —y) from all
periodic replicas oB,, excludingB, itself (cf. [16]). Although this partition is not used in
our calculations, it gives a way of constructing the far-field truncation bouna, v (see
(3.25)) and similar bounds, fi, ¥ for (3.71) by slightly modifying the above arguments.
Namely,vg + 1 is found as the first value &f> 3 satisfying

> QU)IW(x;)

XjeB,

(3.92)

o} k+1 P
U, = _— 3.93
Z = |ak|<gy_d5) T (3.93)

where s, =min||Rs, +m|| (m#0 is an arbitrary integer vector) given by (3.24) is the
minimum of center-to-center distances frdpg to periodic images oD, excludingD,,
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itself, W,k for the far-field bounds differs from (3.86) if3, instead ofR;,, and only the
upper form (3.83) forax| is used due to fast convergence of far-field expansions. Tt
tolerancess is

_ 6 erls, €
w237 Y mzollRsy +ml=4
whereez = O(1) is another numerical factor. As in (3.87), the summation in (3.94) is ove

all blocks B, ¢ S, D B;, and the estimate 23:57 for the inner sum (3.94) suffices. For
every 0<k < vy, the first value oh* with k + n* > 2 and

(3.94)

&2

00 P
> k< s (3.95)
n=n*+1 (k + 1)

is found, anchy andyy; are calculated as max{(k)) and maxn*(k) + k), respectively; the
limitation v onv + n expedites (3.70), but a similar limitation for the near-field part woulc
be inconvenient. The form (3.94) is designed to make the sum of the omitted contributic
from all B, to the RHS of (3.70) less thaake, with our estimate (3.83), (3.85) for the
moments. Only minor changes to (3.93)—(3.95) are used to limit the far-field double-lay
expansion (3.71) by <%, n <fif, andv + n < V. Namely,ex in (3.94) is replaced by
28¢/|1 — 1|, whereé&; = O(1) is one more numerical factor, and, using the upper forn
(3.91) for|ay|, the value ofix is determined from

Cylde/ (o — )" P <o B (3.96)

Next, for every 1< k < vg + 1, the first value of* with k + n* > 2 and
o0

< N+ k! /d\"/dokt
¢, Z i (@) (;5) <& (3.97)

n=n*+1

is found, andis andvy; are calculated as max{(k)) and maxn*(k) + k — 1).

Finally, it was convenient to consider the far-field truncation bourds. . ¥ for self-
interactions (Subsection 3.1) as a particular case of the above schemes, when the summ.
(3.82), (3.85), and (3.92) are over the entire drop sur&cel}? anddy are set to the radius
d, of the minimal shell aroun&, centered ax, {5, =1, and the double sum in (3.94) is
replaced by 33, twice the value of the inner sum (3.98sat=0.

The double-layer truncation bounds are calculated on every iteration at the initial mom
t =0, and only on the first iteration at- 0, when the preceding time step gives an initial
approximation forQ(x;). In all cases, the cost of truncation-bound calculations is negl|
gible. After some experimenting, we fixegi= 1, e = 10, &, = 0.2, & = 2. With chosen
enf, €, Ent, €, OUr truncation scheme depends on a single paramgetard all multipoles
are eventually included, as— 0, if unrestricted (for the near-field) by the threshkid

4. BEST PARABOLOID-SPLINE METHOD FOR NORMALS AND CURVATURES

To calculate the mean curvatukéx;) = %(kl + k») and outward unit normal(x;) = n;
at a nodex; of a triangulated drop surfac®,, we have developed a novel method called
BPS (“best paraboloid-spline”) herein. For an arbitrary veot@onsider a local coordinate
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FIG.6. Schematic for the calculation of the normal vectors and mean curvatures by the best paraboloid-sy
method (BPS).

system(x’, y', Z)) centered ax; and with thez'-axis alongn (Fig. 6). Let(X;, ;. Z;) be
the (X', y’, Z') coordinates of vectors; =X; — x; from x; to adjacent nodes;, and

Cx2+ DXy + Ey2—27)°
Mi(n) = min > (Cx] 0%+ B — 7))

, 4.1)
l1xi; 112

TTXjeA;

where the summation is over the sétof nodesx; adjacent tog;. The minimum (4.1) is
found by a simple solution of a linear system for D, andE, and is independent of an
arbitrary rotation of(x’, y’, ') about thez'-axis. Obviously,IT; (n) is a measure of local
deviation ofS, from the best paraboloid = Cx'? + Dx'y’ + EZ? with the givenz'-axis,
andIT; (n) = O(h%), if nis the exact normal a andh is the characteristic mesh size. Also,
[xij - (Ni +njI?/lIxij 1> = O(h*) for mesh edges;; and exact normals;, n;. Based on
these observations, in the BPS method the set of norfngl®n S, is found to provide a
global minimum to the function

o= Zn(n)+csz[x" (n + ny)J* 4.2)

2
= I 1

under the constraint:,? =1, where the first sum is over all mesh vertiges S,, the second
sum is over all mesh edggs on §, (withi < j to avoid double counting), ard = O(1) is
a numerical coefficient. Fax = 0, the normals); would be decoupled and BPS equivalent
[3] to the local best-paraboloid technique [2]. The second term (4.2) of spline characte
prompted by the curvatureless formulation [2, 3] and interlinks the nommalger the entire
surface. Given an initial approximation {o;}, all the normals; on §, are successively
updated by local minimizations of (4.2) with respect to anighese cycles (outer iterations)
are repeated until afl; stabilize to within; = 10-4-1075.

Inner iterations are required to minimize (4.2) with respect togné gradient method
is the simplest,

n"™ =pP/IPI,  P=n{-sVlo,
4.3)
ni"” + )]

IIxij 112 ’

vo = v () + 2, Y P
XjeA;

wheren(”) is thevth inner iteration and means the projection on the plane orthogonal tc
n’; the small paramete¥ is fixed at 0.05. The calculation 6f/T1; necessary for (4.3) is
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described in [3] as a part of another method. Iterations (4.3) terminaté Bide| < 5, < 81
(with 8, =107°-107). An alternative, more efficient for a poor initial approximation, is to
make one iteration (4.3) from® ton” and generate two additional poim$’ andn'® on

the unit sphere, so thaf®, n{ (2) n® form an equilateral spherical triangle centeredet
Stereographic coordlnatesmcf’), n?, andn® (zero forn{”) in the plane tangential to the
unit sphere ab ™ are obtained by projecting from the sphere center onto this plane &nd
approximated as linear plus quadratic functions of the stereographic coordinates. The lii
part is known exactly througtk andVv!'® atni(l), and the quadratic part is found by fitting
® to its values ah(o) (2) , and n(3) Minimization of the approximating function gives a
new initial pomtn(o) and the process is repeated ufifl! ®|| < §,. Upon convergence, the
C andE coefficients in (4.1) also give the mean curvatltes) = —(C + E).

In dynamical simulations (Section 6), wish =104, §, = 10"° and the initial approx-
imation to{n;} from the preceding step, typically 10—20 calculationdlpfand VII; per
node suffice, and so the BPS-part of our code is relatively inexpensive, even=far
“Spline” in the name of the method should not be misleading; from traditional splines, Bl
only borrows the idea to interlink atl; through a sparse matrix.

Figures 7-9 demonstrate the effectobn the accuracy of the normal-vector calculations
by BPS for ellipsoids?/a? + y?/b? + z2/c?> = 1 and an axisymmetrical spool-like shape
obtained by rotating the curv& = (0.22% + 0.05)%(1 — %) (the insert in Fig. 9b) about the
z-axis. Unit-sphere triangulations intd, = 80, 320, 1280, and 5120 elements were pre:
pared by a standard refinement procedure (e.g., [2]) from anicosaedron and subjectto &
dom rotation (such a rotation may slow down the convergence but was used for general
The simplest mappings, y, z) — (ax, by, cz) and(x, y, z) — ((0.2z2°+0.05)x, (0.22%> +
0.05)y, z) were then used to obtain ellipsoid and spool shape triangulations from ur
sphere triangulations. Intriguingly, Figs. 7-9 and additional calculations for other shaj
reveal thats = 1 is always a much preferable choice (except for very cigeand gives
a striking advantage over the local best paraboloid methog 0) for fine triangulations.
For example, for the ellipsoid =1, b=0.5,c=0.3, andN, =1280-5120, the average
error of BPS is 29-60 times less, and the maximum error is 7-22 times less, compare
the best-paraboloid method (Figs. 7a, 7b).

In contrast, for the curvatures, the new method does not offer any significant impro
ments over the local best-paraboloid technique. Despite this bottleneck, using BPS \
¢s =1 drastically improves the quality of long-time multidrop simulations (Section 6
probably because accurate normals are essential in updating the surfaces. From our e
ence, BPS is recommended for drops with large deformations, but still away from breal
and cusping. In breakup simulations, not considered herein, the present version of BPS
be unstable, and we have preferred local methods [3]. As our most recent multidrop ca
lations show, it is reasonable to switch, in exclusive cases, from BPS to the best-parabc
method for individual drops with abnormal high-curvature zones. Advantages over |
contour integration method for determining the mean curvatures are described in [2].

5. ADDITIONAL DETAILS

5.1. Passive Mesh Stabilization

A familiar difficulty in 3D boundary-integral calculations for deformable drops is dy-
namical mesh degradation. Namely, if the collocation nodes are simply advected with
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FIG. 7. The average (a) and maximum (b) absolute erflors- ne.cdl in the normal vector calculation by
BPS for a 3D ellipsoid with different numbels, of triangular elements; the limd, = 0 corresponds to the local
best paraboloid method.

fluid velocity or with the surface normal velocity, an initially regular unstructured mesh «
triangles on a surface becomes highly irregular and invalid after a short simulation tir
We use one of the passive mesh stabilization schemes [3] to construct an additional gl
tangential field on each surfa& separately from the solution of a variational problem to
prevent mesh degradation. Namely, at any instant of time, the vertex vel&Gitiedx; /dt

to be used in the shape updates are required to minimize

1 (d S

Xij

i L[ s 1 (A8
+ Ca1(|Kmaxl) Z 1% E [dt”x” [ :| + C2([Kmaxl) % Si dt (5.1)

Xij
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FIG. 8. The average (a) and maximum (b) absolute erfiors- ne.cfl in the normal vector calculation by
BPS for a disk.

under the constraintg; - n; = q;, where the normal velocitieg are given by the solution
of the boundary-integral equations. The summations in (5.1) are over all meshxgdges
Xj —X; (with i < j) on §, and over all mesh triangles on S, with areasS,; n is the
normal ak; calculated by locally fitting the best plane [fnax = max(|ky|, |kz|) isthe local
maximum of two principal curvatures, agd -) stands for the surface average. As explainec
in [3], the first term (5.1) is responsible for anisotropic mesh adaptation to high curvatu
the second term (5.1) prevents the edgeswith low curvature along;; from excessive
elongation, and the last term (5.1) resists triangle degeneration. Excessive adaptivity to|
curvature zones may be disadvantageous, especially when these zones are rare and |
small effect on overall dynamics or macroscopic quantities of interest; for weak adaptiv
we set relatively high values for the constaots=1 andc, = 2. With some effort,F is
expressed [3] as a quadratic functio{\éf} and minimized by conjugate gradient iterations
[2]. Note that this method uses meshes with fixed topology and allows the elements tc
highly stretched (which is natural, since the direction along a drop is typically the one
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FIG. 9. The average (a) and maximum (b) absolute erfors- N in the normal vector calculation by
BPS for the axisymmetrical spool-like shape shown in (b).

slow spatial variation of unknowns), in contrast to essentially isotropic techniques [4
42] of mesh restructuring into compact elements. Besides, our method seeks to minirr
in some sense, the “kinetic energy” of disordered mesh motion, thus avoiding exces:
numerical stiffness inherent in the simplest grid tension approach.

5.2. Smoothing and Rescaling

A considerable difficulty of boundary-integral calculations for deformable drops is a pc
sible catastrophic development of shape irregularities. These irregularities may be phy:
cusps [3] observed experimentally [43] (typically foek 1) or numerical artifacts. For our
hybrid code, a finite precisiofiof multipole truncations is one obvious source of artificial
irregularities, due to jumps in the velocity calculations. These artificial irregularities a
often amplified by local instabilities due to an insufficiently small time step. While th
precisione can be tightened with a modest effect on the CPU time (Section 6), integratic
with small time steps would be too expensive. Instead, we follow the approach of [3]
add an artificial normal velocity to that provided by the boundary-integral solution at es
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step to dynamically smooth irregularities. Unlike in [3], we use a weaker, differential for
of smoothing which is most suitable for suppressing artificial irregularities. Namely, tl
normal velocityg =v-n on §, is modified to

a(x) + esa>(|al)e VK3 (X)) (5.2)

in collocation nodeg =x;. Here,es « 1 is a smoothing parametéfq|), is the average of
|g| overS,, andV3 is the surface Laplacian. The additional term (5.2) has a zero mean
S, and is small, except in the irregularity regions. Strong sensitivity to the curvature a
an odd power ok in (5.2) have a restoring effect irrespective of the sigk ahd tend to
suppress shape irregularities. It is possible to cheg$e facilitate long-time calculations
with a negligible effect of smoothing on the overall dynamics (Section 6).

With k andn provided by BPS (Section 4), the smoothing term (5.2) is calculated «
follows. We approximat&3(x) — k3(x;) atx ~x; as a quadratic polynomial of the coordi-
nates of(x — x;) in the tangential plane &;. Five coefficients are found by least-square
fitting to k3(x;) — k3(x;) at the adjacent nodes € .4;, and the linear part givegsk3(x;).
With Vsk3(x) known on the entire surfac§,, the flux of Vsk® through a small closed
contour of mesh triangles with the vertexgives the divergencéd/s - Vsk2, atx; and the
smoothing term (5.2). This procedure has a crude, but adequate, accur&@kfoisince
the additional term (5.2) is generally small and used only for smoothing.

We also reset the volumes of all drops to their initial value at each time step by shze
rescaling at drop centroids, to avoid a long-time cumulative error. The necessary sh
changes at each step are too small to produce artificial overlappings, even at high vol
fractions. The effect of rescaling disappears altogether for fine triangulations but is expe
to accelerate convergence. Interestingly, this rescaling, of frequent use in boundary-inte
calculations, was found undesirable in our critical breakup study [3]. In the present wo
however, most drops are far away from breakup conditions.

The choice of the time step is discussed in Appendix C.

6. NUMERICAL RESULTS

As the first test, we compared the sedimentation| atgs| /U, (whereUy is the settling
velocity of an isolated drop) from (2.18) for static random configurations of spheric
drops by the present code with the calculations of Mo and Sangani [35]. They use
purely multipole,O(N?) code forN = 16 drops in a cell with averaging over 20 random
configurations and an extrapolatibh— oo by an effective-medium approximation (which
is difficult to generalize for nonspherical drops considered below). We Nsed4-125,
N, = 1280 triangular elements per drop, precisioa 5 x 10~4a?, thresholdk, = 15 and
averaging over 20-70 configurations prepared by the Monte Carlo method (e.g., [4
for the same “hard-sphere” distribution. Table | gives, for evergnd the drop volume
fraction c, our results afN =64 (the top value) and 125 (the bottom value), along with
the calculations of Mo and Sangani [35] fbf=16 (the top value) and extrapolated to
N = oo (the bottom value). Our results show a systemic, but very slight increaSeisis
changed from 64 to 125. For each paingic andN =64, 125, a few configurations were
selected to verify that the increase Mf, from 1280 to 2160 changed the sedimentatior
rate by less than 0.19%; tightening the precisioto 10-*a® had even a much smaller
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TABLE |
The Average Sedimentation Rate for Static Random Suspensions of Spherical Drops

Present code Mo and Sangani [35]
N = 64 (top),N = 125 (bottom) N = 16 (top),N — oo (bottom)
[« r=1 10 [« A=1 10

0.25 0.299t 0.003 0.20Gt 0.002 0.25 0.250 0.190

0.303+0.002 0.203: 0.002 0.30 0.23
0.35 0.19H-0.003 0.11@+0.002 0.35 0.146 0.098

0.194+ 0.002 0.112:0.001 0.17 0.11
0.45 0.117:0.001 0.057%0.0007 0.45 0.088 0.051

0.120+ 0.001 0.0592+ 0.0005 0.099 0.055

Note.The statistical errors for the present calculations correspond to the 67% confidence level.

influence (a more obscure accumulated effeat ofi long-timedynamicalsimulations is
discussed below). For one configuration wkh= 64, c=0.45, » =10, andN, = 1280,
we checked that using the exact curvature and normals for spheres changed our boun
integral sedimentation rate by less than 0.0001%. Overall, our results are in agood agree
with the extrapolated values of Mo and Sangani [35]; minor differences may be due
larger statistical uncertainties fof =16 than those folN =64, 125 in Table I, and/or
an approximate character of the effective-medium extrapolatien co (as suggested
by Fig. 5 of Sangani and Mo [11]). Without an extrapolation, however, small syster
(N =0(10)) would be inadequate for sedimentation calculations.

LargeN are even more important in dynamical simulations for sedimenting deformal
drops, because of clustering. Figure 10 presents snapshots of our simulatfba for5,
c=0.251=1,N=125 N, =128Q ¢ =5x 10%a? k,=15,ss=1.5x 107>, and the
time step parameter (Appendix €); = 1.85 for different values of the microstructural
time  =ta; only the drops with centroids in [@)® are shown. As for Table |, the initial,
“well-mixed” state { = 0) of non-overlapping spherical drops was prepared by the Mon
Carlo method [44]. Figure 11 shows the shape and mesh evolution for one chosen
which experiences large deformations. It is seen that the passive mesh stabilization (
section 5.1) maintains the mesh quality for long-time simulation$:=%80, a single drop
would have fallen 48 radii. The simulation in Fig. 10 demonstrates the phenomenor
clustering of an initially homogeneous emulsion, leading to the formation of holes an
considerable increase in the sedimentation rate (see below).

Because of the large size of the code, itwas crucial to test our hybrid scheme of calcula
the inhomogeneous term (2. /&)y) for arbitrary shapes. The runin Fig. 10 was interruptec
atT=1446 to compare ouF(x;) with exact valuefF¢,(x;) (for a given triangulation)
obtained by standard point-to-point summations in (3.4a) and (3.8a), i.e., without d
partitioning into blocks and multipoles. In the point-to-point sche@,; — y) was split
into (Go + G1)(xj +k—Y), with xj + k—ye[—1, )% and the integek, and the smooth
part G; was calculated as the quadratic Taylor approximation at the nearest node
161x 161x 161 mesh in%%, %]3 through tabulated derivatives G to the second order
in [0, ]° and symmetry properties; this procedure gK&s; — y) without any appreciable
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FIG. 10. Snapshots of the dynamical simulation from a homogeneous initial state of spherical drBps for
1.75,¢=0.251=1, N=125 N, =128Q ¢ = 0.000%2, k, = 15, 55 = 1.5 x 10°°, and c,, =1.85. The drops
sediment downwards.

error. We considered three criteria to quantify the difference betWwesmmdFy,

1
81(F, Fe) = (FLy IF (i) — Fex(®)Il. (6.1a)
18 1 e
_ Y 112
52(F. Fed = ;{ Gy maxF(x) — Fex(x)] } : (6.1b)
83(F, Fed) = [((F — Fen2) /(F2)] Y. (6.1c)

Here,(---), and(- - -) denote averaging ove§, and all surfaces, respectively.

Table Il demonstrates that &l, 85, 53— 0 ase — 0, as a check of the convergence of
our results to those by the standard method. It takes our code only 60 and 84 seconc
CPU time on a DEC 500au to calculate all the boundary integrals (2.7a)@rx 10%a2
and 5x 10-5a?, respectively (Table II); these times are much faster than 95 min for tt
standard optimized point-to-point summation code, even with a linear interpolation for 1
smooth parG; of Green’s function. Thus, without any significant loss of accuracy, two
orders-of-magnitude advantage is gained by the present codé£00(100). The limit
Fexisachieved, as— 0, irrespective ok,, but using high-order multipolesis essential at the
advanced stage of drop deformation. For example, ijésireduced to 6, the calculation
of boundary integrals (2.7a) fer="5 x 10~*a? slows down almost three times, because the
multipole expansions, when insufficient, are replaced by costly direct summationskdarge
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shown in Fig. 10. The plane of view contains the line of maximum elongation (withixaxx; ||) and the vertical.

are even more important for higher precisions. The rdgge 15-20 was found optimal
in this and the following simulations. The total CPU time per time step slightly grows (k
30%) from the beginning to the end of the simulation in Fig. 10, mainly due to the incree
in the number of blocks3, (209 atf = 144.6) and clustering. The whole run in Fig. 10
took 2000 second-order Runge—Kutta steps (with two-fold boundary-integral solutions
each step) and about four days on a DEC 500au, with BPS and mesh stabilization |
contributing roughly 20% each; for a standard, point-to-point summation of interactiol
this simulation would take nine months.

TABLE II
The Convergence of the Present SolutioR to the Standard O(N?NZ ) Solution Fey
ase — 0, in the Single-Layer Test forN =125 N, =1280

€ 81 (F, Fey) 8, (F, Fex) 83 (F, Fex) CPU time (s)
5x 107%a? 3.46x 10 1.63x 101 4.52x 1072 —
5x 10-%a? 144x 1071 4.88x 1072 1.18x 1072 48
5x 10~*a? 2.38x 1072 9.79x 1073 2.27x 1073 60
5x 10-°a? 7.20x 10°° 167x 1073 3.70x 10 81
5x 107%a? 6.54x 1074 2.22x 10 5.24x 10°° 112

Note.The CPU times (in seconds) are for the calculatioft dfy the present method.
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line for N =125 corresponds to the simulation in Fig. 10. The long-dashed line is for another random init
configuration withN = 125 ande =5 x 10~%a?.

We have studied the effects of precision, smoothing, and triangulation on the se
mentation rate irdynamicalsimulations by repeating the run in Fig. 10 frdra 0 with
different ¢, es, N5, and by taking another initial random realization of spherical drop
with c=0.25, N = 64 (initial configurations are available from the authors). Increasing th
smoothing parameteg from 1.5 x 107°to 4.5 x 10~° did not show any appreciable effects
in the studied time range. Small differences between the results=&x 10-*a? (short-
dashed lines) and 5 10~°a? (solid lines) in Fig. 12 suggest that< O(10-“a?) gives a
practically precision-independent sedimentation ratef for180. With a crude precision
e =5x 10"3%a?, the run forN = 125 N, = 128Q c,; = 1.85 failed early at =83 due to
instability. Compared to the runin Fig. 10, the simulationfoe 64, s =5 x 10 %a2, N, =
128Q ca¢ = 1.7, with 2000 time steps required to redch 191, took about 44 h on a DEC
500au, showing a®@(N), rather tharO(N?) scaling for moderately larghl =64 — 125.
The runs fors =5 x 10-°a? were only slightly (15-20%) slower than those foe 5 x
10-*a?. The difference between the solid lines fdr=64 and 125 in Fig. 12 does not
necessarily mean slow convergence of the result§ as co. There is an additional de-
pendence on the initial configuration (as illustrated by a long-dashed lind f8d.25 in
Fig. 12), and the results of many initial configurations should be averaged before taking
limit N — oo; this task, however, goes beyond the scope of the present paper.

Figures 13a, 13b show the sensitivity of the precision-independent restisx 10-%a?)
to surface triangulations. When BPS is used for the curvatures and normats with(solid
and short-dashed lines in Figs. 13a, 13b), the resultd for 1280 and 720 are in a remark-
able agreement up to large times, bothlfb= 125 and 64, even though the sedimentatior
rate is a strong and complex function of time for individual realizations. In contrast, fi
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FIG. 13. The effect of surface triangulations on the sedimentation rate for individual realizations
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(N, =1280 and short-dashe@N, =720 lines are for the simulations using BPS. Dark squais=£ 1280
and long-dashed lingN, = 720) are for the simulations using the local best paraboloid method.

the local best-paraboloid methdd, = 0), the calculations foN, =1280 and 720 (dark
squares and long-dashed lines in Figs. 13a, 13b) are convergent only in a more limited
range.

An initial decrease of(vs)s|/U, in Figs. 13a, 13b is not accidental. At small times, drog
deformation from the initial spherical shapes plays a minor role. O®twé) level of pair
interactions, dlowing emulsion of spherical drops was shown to be more viscous than
the well-mixed state (without the Brownian contribution to the stress) [45]; according
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FIG. 14. Snapshots of the dynamical simulation from a homogeneous initial state of spherical drc
for B=25,¢=0.4,1=0.25 N=64, N, =216Q ¢ =5 x 107°a?, k, = 20, &, = 1.5 x 1075, andc,, =0.5. The
drops sediment downwards.

such an emulsion is expected to sediment slower, which is confirmed by Figs. 13a, !
Further drop motion leads to stretching, with a strong preference for almost vertically aligr
prolate shapes. However, the deformation itself cannot account for a strong increase o
sedimentation rate. For example, the model of a vertically alligned solid spheroid with 1
deformation equivalent to the average deformation in Fig. f0=a180 gives the settling
velocity of an isolated drop as no more than 4% higher than for a solid sphere of the se
volume (e.g., [46]). The actual increase @fs)3| /U, is much larger and is due to clustering,
an indirect consequence of drop deformations.

A considerably more difficult simulation is presented in Fig. 14def 0.4, B=2.5,
1=0.25 N=64, Ny =216Q ko =20, 6s=1.5x 1075, and ¢ =5 x 10~%a2. Unlike for
¢=0.25 and) =1 (Fig. 10), much smaller time steps had to be used to maintain the s
bility (ca; =0.5). The iterative solutions of (2.12) were terminated ofgav’ 1, w®) <
1023 for two consecutive iterations™, w*b with 8, being a compromise between the
conservative (6.1a) and loose (6.1c) criteria; typically, 3—4 iterations sufficed. A simil
run was performed foN, = 1280 tof =45.4. In these simulations, the average gap be
tween a drop and its neighbors was estimated.@3a0for any{ > 35; the minimum gap
was much smaller, just a few thousandthsaoDespite such small separations, our runs
could proceed without any artificial subgrid lubrication or repulsive forces. Instead, it
the physical development of sharp tails (Fig. 15) which caused the calculations to s
Despite this difficulty, our numerical solutions are capable of describing strong tempo
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FIG.15. The mesh and shape evolution for one chosen drop from the simulation shown in Fig. 14 and a sin
simulation withN, = 1280. Frame&= 10 to 35 are folN, = 1280; framed = 40 and 45 are foN, = 2160. The

plane of view containg and the line of maximum elongation.

changes of the sedimentation rate, about twofold from its minimum (Fig. 16); the results
N, =2160 (a solid line) and 1280 (a dashed line) are in a good agreement. An additic
run was performed foN, = 1280 and a cruder precisien= 2 x 10*a? to T = 43.6, but
showed a much smaller accumulated effect of the sedimentation rate (within 0.25% up
tof = 43.6) than in the simulations far=0.25, A = 1, B=1.75 (see above); the difference
between the two curves in Fig. 16 is due to triangulation error.

To check our hybrid scheme for the double-layer term (2.12b), the ruNfoe 1280
ande =2 x 10~*a? in Fig. 16 was interrupted dt=38.3 (with 115 blocks) to compare
one iteration of (2.12b) by our code at different precisionsthe double-layer truncations
(Subsection 3.5) with one iteration calculated in a standard point-to-point manner (us
again, a quadratic Taylor approximation from the table for the smooth stresslet part,
In all these testsF(y) was fixed from our hybrid calculation with= 2 x 10~%a?, since
this part of the code was already verified foe 1; the inhomogeneous term (2.7a) and
BPS calculations required 44 and 8-9 s, respectively, on a DEC 500au. The value
81(V, Vex), 82(V, Vex), andész(V, Veyx) (Wherev andvey are the velocities (2.17) by our code
and the standard scheme, respectively) in Table Il confirm the convergenogy for
e — 0. In this test, one velocity iteration of our code required 56 and 80 s=d& x 10~*a?
and 5x 10~°a?, respectively, on a DEC 500au; foe= 0, when the drops are spherical, these
CPU times are even smaller (27 and 38sat5 x 10~4a and 5x 10-°a?, respectively). In
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FIG.16. The sedimentation rate vs time for the simulation shown in Fig. 14 (solid line) and a similar simulatic
with N, =1280 (dashed line).

contrast, for thes&l = 64 andN,, = 1280, one iteration by the standa@dN2N?2) method
takes 63 min at everf, even with the simplest, linear interpolation feg. To reach the
samée = 45, the runs foN, = 1280 ¢ =5 x 10 °a? andN, = 216Q ¢ =5 x 10~°a? took
2500 and 3400 second-order Runge—Kutta steps, and 15 and 38 days on a DEC 5(
respectively; the CPU scaling per time step is closeO(dN,), rather thanO(N2), in
these simulations. Although these computer expenses appear large, a standard poil
point method would require about 2.5 and 9 years for the same runs\with 1280 and
2160, respectively, tb=45!

Koch and Shaqgfeh [47] predicted analytically, on the pairwise level, the instability of
dilute suspension of sedimenting solid spheroids. We attribute the nonexistence of a st
state in our simulations to some qualitative analogy between the two systems. Owing
this unsteady character of the problem, ensemble averaging over many initial realizati
is essential before taking the limit — oo, and the average sedimentation rate should b
studied as a function of time. Our systematic calculations of this kind, relatively easy |
A = 0O(2), will be published elsewhere.

TABLE IlI
The Convergence of the Present Solutiom to the Standard O(N2NZ ) Solution Vey, ase — 0,
in the Double-Layer Test (One Velocity Iteration) for N = 64, No = 1280

3 31 (V, Vex) 85 (V, Vex) 83 (V, Vey) CPU time (s)
1.25x 10'a? 2.86x 101 1.28x 101 2.98x 1072 26
1.25x 102a2 5.57x 1072 3.44x 1072 7.58x 107° 33
1.25x 103%a? 1.18x 1072 6.73x 107 1.42x 1073 47
5.00 x 104a? 6.21x 1073 3.28x 1073 6.93x 104 56
7.50x 105a2 1.52x 1073 6.61x 1074 1.42x10* 75

Note.The CPU times (in seconds) are for one iteration by the present méthedl5-20).
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7. CONCLUSIONS

The efficient 3D algorithm has been constructed for hydrodynamical interaction of me
deformable drops at zero Reynolds numbers with triply periodic boundaries and sub
to gravity. The algorithm is a hybrid of boundary-integral and economical multipole tec
nigues, with extensive use of rotational transformations to optimize near-field sumn
tions. Very high, two-order-of-magnitude gains in computational speed over the stanc
boundary-integral techniques are achieved with the present method, even for a moder
large number of drop®l = O(10?) with surface resolutions o, ~ 10° triangular ele-
ments per drop. Also a part of the code is the new, best paraboloid-spline technique (E
for the normal vectors and curvatures on unstructured triangulations, greatly improv
the quality of long-time dynamical simulations. Our systematic dynamical calculations
the sedimentation rate for viscosity ratios= O(1) and N <200 using this code are in
progress. Attempts will be made to expedite calculations in the most difficulticaseg,
by improving the simplest near-singularity subtraction (3.9a)—(3.9b) (to allow for limite
triangulations) and using Lanczos’ biconjugate gradient iterations [2]. With minor chang
our code is applicable to moderately polydisperse systems.

Since the present or similar 3D hydrodynamical problems have been unchallengec
other fast multiparticle strategies, itis difficult to make firm judgements about their possil
performance in our case. We can only note that the new 3D FMM [26] has shown about
and 53-fold advantages over direct summations for 40,000 and 80,000 charges, respect
in the case of Coulombic, free-space interactions with random uniform distributions ir
cube and moderately high accuracy (Table 2 of [26]). For a similar actual accuracy,
have observed, with our code, about 66- and 71-fold advantages over direct summatiol
the double-layer and single-layer tests b, /2+ 2)N = 41,088 and 80,250 collocation
nodes, respectively, for the more involved case of Stokesian interactions with peric
boundaries at the advanced stage of drop deformation (Section 6). These gains are
higher for nearly spherical drops. Although it is attractive to test different schemes
multidrop interactions, the present technique may be close to optimal for up to seve
hundred drops wititN, ~ 10°. Larger systemgN ~ 10°) would likely require additional
ideas to avoidD(N?) scaling, namely, the FMM merging of singularities diMPschemes.
Such 3D systems of drops with adequate resolutibn~ 10°, however, would be too
prohibitive for dynamical simulations on present-day computers. Also, if each drop hac
be discretized by a very large number of elemghts > O(10%)), a faster scheme would be
needed for self-interactions; this resolution, however, would limit the present-day dynami
simulations to a few drops only.

Most of our code is applicable to study the rheological behavior of many drops in a sh
flow, rather than subject to gravity; the far-field part (Subsection 3.4), however, present:
additional challenge, since the basic periodic cell changes with time. The physical beha
of drops in the two cases is surprisingly different. For the same volume fraction, the eff
of interactions on sedimentation is much stronger than on the rheology in a shear flow. \
deformation, sedimenting drops cluster (which would make simulation®NferO(10)
meaningless); in contrast, calculations [5] for several drops at small and moderate voll
fractions indicate the absence of clustering in a shear flow, making the use oNarge
this case less imperative. However, for highly concentrated 3D sheared emulsions, clo:
liquid foams, largeN are needed, at least, to avoid ergodic difficulties, and our techniqu
can handle such systems.
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APPENDIX A

The Construction of Minimal Spherical Shells

We use the simplest stochastic procedure to construct the minimal sphericaDghell
aroundB, with sufficient accuracy. An initial approximatic(ug)@) to the shell centex‘;,
is the midpoint of the block diameter. (k)" is the vth iteration ofx?, and (d)™” =
maxx; — (x9)"| overx; € B, is the radius of the minimal shell arouiyj with the center
(x3)™), then the improvement ak?) ™ is tried as

(00) Y = (x0)" +£18,172 [Xj* - (X‘;)(”)}, (A1)

where£ € (0, 1) is a random numbet3, | is the number of nodes i3,, and |X;. —
x)M|=(dH™, xj. € By; displacement (A.1) is acceptec(df‘y’)("*l) < (d)™, while oth-
erwise a new random numbeéris tried, etc. With|B, |/2 Monte Carlo steps (accepted or
not), the minimal shell construction for dfl, takes a negligible portion of total expenses.

APPENDIX B

Fast Pointwise Calculation of Lamb’s Series

The form (3.19) for Lamb’s regular series (3.17) simply follows from the fact that (3.1
minus the first term of (3.19) is a harmonic field (cf. with Subsection 3.4). Explicit expre
sions for Cartesian componeritd, )k of H,, m are obtained upon substituting (3.18) into
(3.17), and using (3.36), (3.41) wifR" instead of R+, (3.63), and additional recurrent
relations

1/2

@+ DOFM=DOFM ™ sy ). (BI)

2n—1

(D1£iDy) [,OnYn,m(p)} =+

The result takes the form

(n+2)d?
(Hhm)1 = W_"_i)(an—l,—m—lp\n—l,mﬁ-l — an—1m-1An-1,m-1)
+ 5@ 2 -m-1Bniimit — @ n2m-1Bniim-1)
i
+ E(Vn,mflcn,mfl + ¥n,—m-1Cnm+1), (B.2a)
i(n+2)d
(Hhm)2 = W_i_f)(an—l,—m—lAn—l,m+l + on_1m-1An—1,m-1)
i
+ ﬁ (a,n,z,,m,l Bn+1,m+l + o n2m-1 Bn+1,m71)
S
1
+ E(}/n,mflcn,mfl — ¥n,—m=1Cn,m+1), (B.2b)
(n+ 2)dy 2, .
(Hhm)3z = 2 Br—1mAn—1m + Pnam Bnyim —IimGCqm, (B.2c)

S 2n2n+1) d?
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where, for brevity,

_[@n+DHn+m+D+m+2)]
“nm = 2n+3 ’

20+ H(N+1-mn+1+m]"?
n’m:[(n )(N 2n+rg)(n m)] ’ (8.3)

Yam = [(N —m)(n +m+ D]Y2,

and the terms wittA, v andCp v for n” < 0 or |m’| > n are omitted.
Similarly, using (3.31), (3.36), and (3.41), Lamb’s singular series (3.12) can be writt
in the form (3.21), with

(n—1dp ) )
(Fam)1 = m [Olfnfz,mflAf(mz),mfl - O‘fnf2fm*1Af(n+2),m+1}
1

+ Py [an—l.—m—l B(,yn) m+1 — %n-1m-1 B(,yn) mfl}
2o ’ :

[
+ E [Vn,mflc(,y()mrl)’mfl + Vn,fmflc(j(:wl),erl] s (B-4a)

i(n— 1)dO

») )
(Fom)2 = m [ —n—2,m—1A,V(n+2),m,1 + a—n—z,—m—lA,y(er),erl]

On—1,—m— 1B_nm+1+(¥n 1,m— 1B—nm 1]

i
“ o
1 ) 9
+ 2 b’n,m*lc—(m-l),m—l - Vn,fmflc—(n+1),m+1] ) (B.4b)

(n—1)dy - .
@ P PANB m —imCY) Ly e (B.4C)

= - 'y AY
(Fam)z = 2(n+1)(2n+1)ﬂ n+2.mAZ 12y .m — ds

APPENDIX C

Time-Step Strategy

It is difficult to set rational and universal rules for the time step, especially because
present problem does not have a statistically steady-state solution, and so the optimum
step strategy would depend on the time range of interest. We found the common stak
criterion (e.g., [30])At < KAX (where Ax is the minimum mesh edge) oversimplified,
since the optimum factd depends on shapes and meshes. In the present calculations,
nondimensional time step (based on the length and velocity scales of Section 2) was ch
empirically as

At = car(L+ A)Bmin(A1, Ay)/ad, (C.1)
whereca; = O(1) is a numerical factor,

. AXi . 2h1/2AxI
A7 =min Ar=m

_ . L B C.2
i max([ke(i)], [ka(i)]) " [k2(1>+k2('>]1/2 2
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AX; is the minimum of mesh edges with vertiek; is the minimum of distances from node
i to nodes on other surfacdg(i) andky(i) are the principal curvatures at nodeand the
minima in (C.2) are taken over all nodiesThe factorc,; is largely independent dfl and
triangulations, but is strongly sensitive to the volume fraction.
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